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Abstract

I investigate the relationship between broadband, employment, and population
growth to determine the causal directions between these processes. Starting from
the framework of simultaneous employment-population models, I introduce a model to
account for the potential simultaneous process of broadband-employment-population
for regional economies. The model is furthered by spatial econometric techniques and a
causal interpretation is given between these three dynamic processes. By establishing a
causal direction, the claim that broadband spurs job growth is quantitatively evaluated
as well as other competing hypotheses across the three processes. Results indicate that
broadband deployment is an endogenous process and correcting for endogeneity fails to
find support of claims that assert broadband growth leads to employment growth for
a region. This paper illuminates the need for structural models involving broadband
in evaluating regional economic impacts.
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1 Introduction

High-speed digital communication has become pervasive in most places throughout the

United States. The rapidity and depth with which information and communications tech-

nology (ICT) infrastructure has penetrated across space and across a range of social strata,

economic sectors and cultural milieux provide undeniable prima facie evidence of its value

to society. Substantial direct investments of public funds have facilitated this process -

including, most recently, $7.2 billion set aside for broadband deployment as part of the

American Recovery and Reinvestment Act of 2009. Other public-private partnerships and

quasi-governmental organizations (e.g., Connect America) similarly aim to facilitate expan-

sion of the digital infrastructure.

Such large public investments inevitably merit investigation into their economic impacts.

Proponents of programs aimed at facilitating the spread and penetration of broadband gen-

erally point to research projecting large aggregate economic benefits from widespread broad-

band deployment (Crandall et al., 2001, 2007; Greenstein and McDevitt, 2009). But an

interesting aspect of public spending to promote broadband deployment - and one that

studies of aggregate impacts do not really capture - is that a large proportion of that spend-

ing is place-based, i.e., targeting specific geographic locations. Indeed, broadband promotion

programs are very commonly justified on the basis of projected local economic development

in and around the target location.

A growing literature has found significant associations between various measures of broad-

band deployment and such indicators of local economic activity as the employment, number

of firms, and average sales (Gillett et al., 2007; Stenberg et al., 2009; Osorio, 2006; Shideler

et al., 2007). But there exists little, if any, evidence that convincingly demonstrates a sig-

nificant causal relationship between an increase in broadband availability and an increase in

economic activity (e.g. employment growth). Kolko (2012) ascribes three main deficiencies

in the existing literature to date that need attention in order to establish such “predictive

causality” (Diebold, 2007, p.201): (a) simultaneity in the determination of broadband pro-
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vision, population and employment, with the attendant implications for inferences over the

direction of causality between broadband and growth (of both firms and population); (b)

spillover effects related to the movement of firms and households in response to the oppor-

tunities that high-speed digital communication might facilitate; and (c) heterogeneity in the

magnitude and direction of impacts, both spatially and across economic sectors.

In this paper I take steps in the direction of addressing all three of these concerns in ana-

lyzing the link between broadband provision, population growth, and employment growth, a

measure of local economic performance. Using county-level data over the period 2008-2012

from the 48 contiguous states, I exploit the predetermined nature of lagged variables to ad-

dress endogeneity concerns. The empirical model’s use of lagged values of population and

employment also renders it consistent with underlying equilibrium adjustment models for

both firms and residents developed by Steinnes (1977, 1982), and subsequently by Carlino

and Mills (1987) in their influential examination of whether “jobs follow people” or “people

follow jobs.” I explicitly allow for spatial spillovers by incorporating spatial autoregressive

processes within the econometric analysis. Finally, I conduct disaggregated analysis that

assesses differential employment effects across different economic sectors.

The paper is laid out as follows. The next section, 2, reviews the previous literature on

broadband impacts as well as causal analysis on population, employment, and infrastructure.

Then, the conceptual framework for the relationships of broadband, employment, and pop-

ulation is introduced in section 3. Next, section 4 provides a description of the econometric

strategy to identify the key elements of the causal relationships. Following an overview of

data sources in section 5, econometric results are presented as well as their causal implica-

tions with section 6. In the final section, 7, I consider a variety of extensions to this analysis

meriting future exploration.
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2 Do “People Follow Jobs” or do “Jobs Follow Peo-

ple?”

Modeling the interrelationship between the demand and supply of labor/residents started

with Steinnes and Fisher (1974) and subsequently furthered by Steinnes (1977, 1982). The

model in Steinnes and Fisher (1974) links the employment and residence markets through

two jointly determined equations that depart from the assumption in prior models that job

growth is an exogenous process and causes population growth. By allowing for a system of

simultaneous equations, Steinnes’ model allows for testing the causal relationship between

employment growth and population growth. The model assumes a static equilibrium, which

is an arguably unrealistic assumption within the model as seen by temporal population shifts

across the United States. Because of data availability concerns, the Steinnes studies utilized

data at the Standard Metropolitan Statistical Areas (SMSA) level across at most 7 time

periods. The sample data are of reasonably homogeneous units and are treated as a pooled

data. Each study concludes that “jobs follow people.” This implies that whereas population

growth is a significant predictor in the employment equation, employment growth is not a

significant predictor of population.

Mills and Price (1984) introduced an equilibrium adjustment variable to the preceding

model, whereby employment and population levels adjust towards equilibrium over time

– i.e. relaxing the assumption that the system is in a constant equilibrium across time.

Carlino and Mills (1987) furthered this by lagging the explanatory variables in the model

and by using data at the county level. Use of lags mitigates the potential simultaneity bias

that may be present in a system in which variables are measured at an infrequent rate.

The data improvements also changed the scope of research, as county level data are more

heterogeneous and covers the entire United States. Neither study directly tested for causality

in the employment and population relationship, although their reduced form models did allow

for testing of a causal relationship.
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Boarnet (1994) refocuses the employment-population dynamics on the SMSA level, specif-

ically New Jersey, and accounts for spatial dynamics. In particular, none of the previous

models accounts for the potential that labor markets extend across regional boundaries.

Rather, prior analyses assumes that each unit of observation is independent of the other

unit. A plausible argument is that employment in one sub-region brings population to the

surrounding sub-regions. In practice, this manifests itself in the form of individuals commut-

ing across boundary lines. To account for this, Boarnet defines a set of neighbors for each

sub-region in his analysis based upon geographic distance from other sub-regions. These

neighbors then make up the corresponding labor market or housing market that is included

in the system of equations. After accounting for these spatial issues, Boarnet concludes that

“jobs follow people” based on his New Jersey data.

Henry et al. (1997, 2001) furthers the Boarnet model to account for what he considers

spread, or backwash, effects. The effect that Henry et al. accounts for is essentially whether

growth in employment or population for one area affects its neighboring areas. If an increase

in employment for location i simultaneously increases employment in neighboring locations

j, then this is termed a spread effect. Conversely, if the increase in i reduces employment

in neighboring locations j, then this is termed a backwash effect. The main interest that

is derived from these models is to understand the relationship between urban growth and

its surrounding rural areas. By looking at the growth rates for urban, urban fringe, and

hinterland areas they test for spread or backwash effects. A spread effect would imply the

hinterlands derive growth from urban areas while a backwash effect would be if growth in

urban areas siphons resources away from the hinterlands.1 This research introduces more

sophisticated spatial econometric methods by introducing a spatially lagged dependent in

the equations for both employment and population. Known as a spatial autoregressive model

(SAR) within spatial econometrics, the sign of the parameter associated with the spatially

1 The models developed by Henry aim to address the differential in growth rates of urban-core, urban-
fringe, and rural areas by using urban growth rates as an interaction term. This strategy could be used to
evaluate the claims that an urban-rural digital divide exists and if so, to what degree. This is left for future
research.
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lagged endogenous variable allows one to investigate whether spread or backwash effects are

present. Their models generally support the “people follow jobs” hypothesis.

Bollinger and Ihlanfeldt (1997) establishes a framework to assess the roll of infrastruc-

ture in the population-employment nexus. Specifically, they use the Boarnet framework to

look at the impact of MARTA, the mass-transit system of Atlanta, on the composition of

employment and population from 1980 to 1990. They use census tract level data and the

percentage of a tract within a quarter mile of a MARTA station as the variable of interest.

Their model uses simultaneous equations of employment and population to account for the

interrelated relationship between employment and population, as well as reduce any simul-

taneity bias. Their findings indicate that MARTA did not have a discernible impact on total

population or employment, but it impacted the composition of employment in favor of the

public sector. The decision of where MARTA stations located are treated as exogenous, and

so their results may indicate a choice on the types of employment MARTA aimed to help

rather than MARTA as the driver of employment changes for the city. Where broadband

is a form of infrastructure, their work establishes a framework to determine the economic

impact of infrastructure.

Kolko (2012) model is a subset of the Carlino and Mills (1987) model. Instead of focusing

on the relationship between employment and population, Kolko focuses on employment and

broadband at the zip code level. While Kolko does not model the broadband dispersion

processes, he does use instrumental variable techniques in estimating the relationship be-

tween local employment growth and broadband deployment. Kolko argues that areas with

uneven terrain increase the costs associated with deploying broadband for a region while

being weakly correlated with employment growth. His reasoning implies that the average

slope of terrain can be a weak instrument for broadband. Kolko finds that increases in

broadband providers leads to increases in employment as a whole, as well within certain

industries. However, Kolko cautions that while his findings are suggestive of a causal rela-

tionship, his analysis may suffer from endogeneity concerns insofar as average slope of terrain
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being correlated with employment growth.

Deller et al. (2001) evaluates the simultaneity of employment, population, and per capita

income by extending the original Carlino and Mills (1987) to a system of three equations.

The focus of the article was to evaluate the role of amenities on the quality of life for rural

economic growth. While the model involves a system of three simultaneous equations, only

the reduced form of the model is estimated. The results of the model indicate that natural

amenities are positive determinants of employment, population, and per capita income for

the 2,243 rural U.S. counties.

The literature on the causal direction of employment and population growth leads to a

few natural extensions with broadband. For one, broadband may be an important factor that

drives either employment or population growth. This would lead to including broadband

deployment in the two equation model first introduced by Steinnes and Fisher (1974) in order

to address whether or not “jobs follow broadband” or “people follow broadband.” This is

developed in section 3.1. The model also accounts for labor market effects for employment

and population that are defined spatially a la Boarnet (1994).

I then consider in section 3.2, a more flexible structure capable of allowing for causality

of broadband on employment or on population growth. This is to account for the process of

broadband deployment in order to accommodate for the possibility that “broadband follows

jobs” or “broadband follows people.” Therefore, the model is extended to account for a

process of broadband deployment and leads to a system of three simultaneous equations

as in Deller et al. (2001). Because of concerns for the diffusion of broadband deployment

following a spatial process, I also allow for a spatial lag with respect to broadband. The

methods are described in the following section.
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3 Conceptual Framework

3.1 Population-Employment Model

The Boarnet (1994) model describes an equilibrium relationship between population and

employment location that depends on the surrounding area’s level of population and em-

ployment. A general specification of this relationship can be written as:

P ∗i,t = f
(
E
∗
i,t

∣∣∣ ZPi,0

)
(1a)

E∗i,t = g
(
P
∗
i,t

∣∣∣ ZEi,0

)
(1b)

where P ∗i,t and E∗i,t are the equilibrium level of population and employment for location i

at time t. The vectors ZPi,0 and ZEi,0 are initial conditions of variables within the models

system that determine the equilibrium level. These variables are specific to population and

employment, respectively. There is no restriction that variables in ZPi,0 cannot appear in

ZEi,0 and in practice they do. However, in order to identify the system there must be at

least one variable in ZPi,0 , and in ZEi,0 , that does not appear in the other.2

The variables P
∗
i,t and E

∗
i,t indicate the level of population and employment in the sur-

rounding labor market areas of location i.3 To define the labor market, a neighborhood set

is needed. For general purposes, I shall define an n×n matrix Wl where n is the number of

2 Boarnet (1994) uses transportation access and environmental amenities impacting residents or firms
in his study. Additional variables included in the population equation but omitted from the employment
equation were: percent black, percent hispanic, poverty rate, violent crime rate, proportion of housing stock
before 1940, municipal public expenditures per capita, and per capita local tax payments. The variables
included in the employment equation but omitted in the population equation were: commuter rail access,
number of farm property parcels, per employee expenditures on streets and sewage, equalized property tax
rate, labor market’s total manufacturing employment, and total retail employment.

3 Boarnet defined the labor market using an inverse distance function:

Xi = Xi +
∑
j 6=i

Xj

dαij

Where i denotes the focal region, j denotes all other regions, dij is the distance between the centroids in each
region, and the parameter α describes how the housing or labor market relationship across regions dampens
with distance. The subscript t has been suppressed because of redundancy.
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units which are ordered 1 to n in both the columns and rows of the matrix and l refers to

the equation of interest. Each element, wij,l, denotes the relationship between observation

i and j based upon a function of the spatial characteristics of the data. Typical functions

are based on contiguity of areas, distance bands, or k-nearest neighbors depending on the

characteristics of the geography and economic process of interest. Generally, this can be

stated as:

P i,t = Pi,t + φP
∑
j 6=i

wij,PPj,t (2a)

Ei,t = Ei,t + φE
∑
j 6=i

wij,EEj,t (2b)

where the parameters φP and φE represent the degree to which the location i is connected to

its neighbors j in the housing and labor markets. This connection across labor and housing

markets can loosely be interpreted as an economic cost for living in one region and working

in a neighboring region. The spatial weight matrices, WP and WE, need not be the same,

i.e. reflecting labor markets and housing markets do not necessarily possess the same spatial

characteristics.

Equations 2 have been written in summation form, but they can also be expressed in

vector form to further illustrate the relationship:

P t = Pt + φPWPPt = (In + φPWP )Pt (3a)

Et = Et + φEWEEt = (In + φEWE)Et (3b)

where the variables Pt and Et are stacked vectors of Pi,t and Ei,t, and In is the n×n identity

matrix.

If I assume a linear functional form for equation 1, the system can be paramaterized

stochastically as follows:
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P ∗i,t = α1ZPi,0 + α2E
∗
i,t + ui,t (4a)

E∗i,t = β1ZEi,0 + β2P
∗
i,t + vi,t (4b)

where the vectors α1 and β1 indicate the marginal effects of control variables on population

or employment, α2 and β2 are the parameters of interest in determining a causal relationship,

with ui,t and vi,t as classical disturbance terms.4

The equilibrium levels of population and employment, P ∗i,t and E∗i,t, are unobservable.

Following the approach introduced by Mills and Price (1984), I account for these variables

through observables by assuming a process whereby actual levels for population and employ-

ment converge toward their equilibrium levels. This process can be described as:5

∆Pi,t =Pi,t − Pi,t−1 = λP
(
P ∗i,t − Pi,t−1

)
(5a)

∆Ei,t =Ei,t − Ei,t−1 = λE
(
E∗i,t − Ei,t−1

)
(5b)

where P and E indicates the observable level of population and employment at the given

location and time period. The parameters λP and λE are the rates of adjustment towards

the equilibrium for population and employment. Further, equation 5 can be rearranged to

calculate the rate of change for the population and employment levels as (1−λP ) and (1−λE)

4 In order for this system to be identified, the vectors ZPi,0
and ZEi,0

must have at least on variable that
is not included in the other vector. This is typically known as the exclusion restriction in the literature on
systems of equations.

5 There can be different functional forms within the model. For example, the equilibrium adjustment lag
from equations 5 and 13 could potentially be of a different form:

∆Xi,t = log

(
Xi,t

Xi,t−1

)
= λX log

(
X∗i,t
Xi,t−1

)
Or that the general relationship assumed is non-linear. I am not as concerned about these partly because

the literature has not considered other functional forms but also because these seem like pointless exercises in
evaluating a functional form. I doubt that the added complexity will be a fruitful exercise for its associated
cost.
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respectively.6

The relationship can also be rewritten in terms of levels instead of differences as:

P ∗i,t =
1

λP
Pi,t +

(
1− 1

λP

)
Pi,t−1 =

1

λP
Pi,t +

(
λP − 1

λP

)
Pi,t−1 (6a)

E∗i,t =
1

λE
Ei,t +

(
1− 1

λE

)
Ei,t−1 =

1

λE
Ei,t +

(
λE − 1

λE

)
Ei,t−1 (6b)

This rewritten equation allows estimation of the final equation with a different functional

form, i.e. to help check if the parameter estimates are sensitive to the functional form of the

adjustment lags.

The relationships in equation 5 can be substituted into equation 4 to yield:

∆Pi,t = λP

(
α1ZPi,0 + α2E

∗
i,t

)
− λPPi,t−1 + ui,t (7a)

∆Ei,t = λE

(
β1ZEi,0 + β2P

∗
i,t

)
− λEEi,t−1 + vi,t (7b)

There are two forces that drive the relationship between population and employment across

equations. One is the cross-dependence of employment or population via α2 and β2. The

other is from the equilibrium adjustment lags of λP and λE.7 The adjustment parameters

affect not only the rate at which population or employment adjusts towards its equilibrium

level, but also the impact that a change in another explanatory variable affects the observable

change in population or employment.

By using differences in observables and assuming an adjustment towards equilibrium, the

model can be estimated with one more transformation. Although the equilibrium level for

the labor market of employment or housing market of population is unobservable, I can use

6 For the population equation, this can be seen by taking the derivative of Pi,t with respect to Pi,t−1:

∂Pi,t
∂Pi,t−1

= λPP
∗
i,t + (1− λP )

which represents the growth rate in population as well as its convergence towards equilibrium.
7 See Dynamic System for details.
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equations 2 and 5 in the defined labor market to rearrange the model to be of the form:

∆Pi,t = A1ZPi,0 + A2Ei,t−1 + ΦEWEEi,t−1+

A2

λE
∆Ei,t +

ΦE

λE
WE∆Ei,t − λPPi,t−1 + ui,t (8a)

∆Ei,t = B1ZEi,0 +B2Pi,t−1 + ΦPWPPi,t−1+

B2

λP
∆Pi,t +

ΦP

λP
WP∆Pi,t − λEEi,t−1 + vi,t (8b)

where the parameters have been redefined as ΦE = A2φE, ΦP = B2φP , Aj = αjλP and

Bj = βjλE for j = 1, 2. The model now includes only observable economic variables and

can be estimated. The particular model is a system of two equations and can be estimated

by accounting for the endogenous relationship that arises between ∆Pi,t and ∆Ei,t (due to

simultaneity) and the labor and housing market effects from ∆Ei,t and ∆P i,t. An alternative,

algebraically equivalent, form of the model can be written as:8

Pi,t = A1ZPi,0 +
A2

λE
Ei,t +

ΦE

λE
WEEi,t+

A2 (λE − 1)

λE
Ei,t−1 +

ΦE (λE − 1)

λE
WEEi,t−1 + (1− λP )Pi,t−1 + ui,t (9a)

Ei,t = B1ZEi,0 +
B2

λP
Pi,t +

ΦP

λP
WPPi,t+

B2 (λP − 1)

λP
Pi,t−1 +

ΦP (λP − 1)

λP
WPPi,t−1 + (1− λE)Ei,t−1 + vi,t (9b)

Boarnet (1994) used a spatial two-stage least squares estimator based on Anselin (1988) to

8 In A.1.1, each equation of the model is solved in terms of only exogenous variables.
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account for the spatial lag in the endogenous variables. This model collapses to Carlino and

Mills (1987) if the labor market is not defined spatially, which would still require methods to

deal with the simultaneity present in the model. This is due to the endogeneity of population

and employment variables in the model and necessitates econometric methods to correct this

bias. In the non-spatial models of Mills and Price (1984), Carlino and Mills (1987), and Kolko

(2012), the typical method has been a two-stage estimation procedure.

Table 1: Necessary Conditions for Causality: Two Equation Model

“people” “jobs” “broadband”
“people follow” — α2 > 0 α1,BB > 0
“jobs follow” β2 > 0 — β1,BB > 0

In order to evaluate how infrastructure such as broadband affects population and em-

ployment, I can promote the broadband variable from ZPi,0 and ZEi,0 in each equation and

define as A1,BB and B1,BB. This was first suggested in Bollinger and Ihlanfeldt (1997) with

respect to the infrastructure of mass transit for Atlanta. Evaluation of the parameters asso-

ciated with the initial conditions of broadband in each equation, as seen in table 1, allows for

inference on whether “jobs follow broadband” or “people follow broadband.” If broadband

is a significant predictor in the employment (population) equation, then this is consistent

with “jobs” (“people”) “follow broadband.” Asserting these claims would be valid under the

assumption that broadband deployment is an exogenous process. The assumption is fairly

heroic, and so I adopt Kolko (2012) method of instrumenting broadband with average slope

of the terrain. While this is an attractive model that can be useful in evaluating certain

types of infrastructure, this lacks insight on where broadband is deployed. This is expanded

further in the next section.
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3.2 Extended Model for Broadband

Following the Boarnet (1994) spatial model of population and employment, I can concep-

tualize a three-way relationship with no a priori causal relationship between broadband,

population, and employment growth. A non-spatial model with a system of three simulta-

neous equations was first presented in Deller et al. (2001)

P ∗i,t = f
(
E
∗
i,t, BB

∗
i,t

∣∣∣ ZPi,0

)
(10a)

E∗i,t = g
(
P
∗
i,t, BB

∗
i,t

∣∣∣ ZEi,0

)
(10b)

BB∗i,t = h
(
P
∗
i,t, E

∗
i,t

∣∣∣ ZBi,0

)
(10c)

where the vectors ZPi,0 , ZEi,0 , and ZBi,0 contain a set of initial conditions for variables specific

to either population, employment, or broadband. As per the Population-Employment Model,

in order for the system to be identified and a causal analysis carried out there must be at

least one variable that is unique to each of the vectors.

Further, BB
∗
i,t is the equilibrium level of the regional market for broadband. The market

for broadband is defined in a similar manner of equation 2:

BBi,t = BBi,t + φB
∑
j 6=i

wij,BBBi,t (11a)

BBt = BBt + φBWBBBt = (In + φBWB)BBt (11b)

As before, this specification allows for a spatially dependent relationship among the de-

pendent variables. The inclusion of BB∗i,t in equations 10 allows for the possibility of an

endogenous process for broadband deployments and allows for a causal relationship between
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all three of these variables. Policy makers who are interested in using broadband as a way to

attract firms or high-skilled workers to an area would assert that a region’s level of broadband

is a significant, and positive, determinant of employment growth and or population growth.

Testing this hypothesis also allows us to evaluate whether the positive relationship between

broadband deployment and employment growth is because broadband is deployed in areas

already experiencing, or expecting, large amounts of employment growth. This argument

also applies to population growth. If this critique has any bite to it, then I would find

that employment and population growth are positive and significant predictors of broad-

band growth in the broadband equation. Given a functional form for the relationship in

equation 10, estimating these simultaneous equations enables testing this hypothesis.

Table 2: Necessary Conditions for Causality: Extended Model for Broadband

“people” “jobs” “broadband”
“people follow” — α2 > 0 α3 > 0
“jobs follow” β2 > 0 — β3 > 0
“broadband follows” γ2 > 0 γ3 > 0 —

As before, I assume a linear functional form for the processes by which population,

employment, and broadband equilibrium levels are determined:

P ∗i,t = α1ZPi,0 + α2E
∗
i,t + α3BB

∗
i,t + ui,t (12a)

E∗i,t = β1ZEi,0 + β2P
∗
i,t + β3BB

∗
i,t + vi,t (12b)

BB∗i,t = γ1ZBi,0 + γ2P
∗
i,t + γ3E

∗
i,t + ωi,t (12c)

where ui,t, vi,t, and ωi,t are classical error terms. Given this assumed functional form, it

becomes clear that there are necessary conditions for a causal relationship between the de-

pendent variables as summarized in table 2. These lead to hypothesized tests that can be

carried out empirically and are discussed in Section 4. I assume that population, employ-
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ment, and broadband are unrelated processes unless the data provide strong evidence of a

relationship, tested under the model’s implications.

Further, I assume that the level of broadband for a region over time adjusts toward an

equilibrium level. This is the same as I assumed before for population and employment in

equation 5:

∆BBi,t = BBi,t −BBi,t−1 = λB
(
BB∗i,t −BBi,t−1

)
(13)

which can also be rewritten in the form:

BB∗i,t =
1

λB
BBi,t +

(
1− 1

λB

)
BBi,t−1 =

1

λB
BBi,t +

(
λB − 1

λB

)
Bi,t−1 (14)

It is important to discuss the implications of such an equilibrium adjustment here. In-

frastructure operates in a different manner than individuals or firms. A crucial difference

is that individuals and firms have the ability to migrate, whereas it is extremely costly for

infrastructure to move. By looking at the population and employment equilibrium adjust-

ment from equations 5, the adjustment parameters λP and λE are an approximation to an

unknown functional form of how these two variables evolve over time and across markets.

The more mobile the factors are, the more accurate the equilibrium adjustment parameters

approximate the true relationship.

Infrastructure is clearly not as mobile as population or employment. Infrastructure does

have upkeep due to deterioration, which involves maintenance costs, of which failure to pay

may cause the infrastructure to cease to function. Further, improvement in technology may

make the current infrastructure obsolete. Insofar as broadband is a type of infrastructure,

municipalities and telecommunication companies can choose an amount of capital to invest

in broadband infrastructure. This investment decision may have a large upfront cost, but as

technology progresses, these costs decline, which induces more areas to adopt. Further, the

upfront costs differ across regions for multiple reasons. If there are certain types of existing
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telecommunication infrastructure9 already in place, the costs may be substantially lower.

The costs also differ based upon the type of terrain. Mountainous areas and areas with

uneven landscapes involve more labor and capital to deploy, thereby increasing the costs

of broadband. The characteristics of the housing stock also affect the costs of deployment.

Broadband is expensive to install in older homes as they may not be currently wired to

obtain access. Conversely, areas with increasing housing start-ups will face lower costs of

deployment as broadband can be installed with other infrastructure involved in the building

process. These factors suggest significant variation across both time and space, and hence an

equilibrium adjustment of the form in equation 13 is still appropriate even though broadband

is not as mobile as population or employment.

Substituting in equations 12 for the equilibrium levels in equations 5 and 13 gives us:

∆Pi,t = λP

(
α1ZPi,0 + α2E

∗
i,t + α3BB

∗
i,t

)
− λPPi,t−1 + ui,t (15a)

∆Ei,t = λE

(
β1ZEi,0 + β2P

∗
i,t + β3BB

∗
i,t

)
− λEEi,t−1 + vi,t (15b)

∆BBi,t = λB

(
γ1ZBi,0 + γ2P

∗
i,t + γ3E

∗
i,t

)
− λBBBi,t−1 + ωi, t (15c)

The system here mimics the system with only population and employment in that there are

two forces that drive the above relationship. The cross-dependence terms of α2, α3, β2, β3, γ2,

and γ3 all relate to the hypothesis of whether a process depends upon the other. Further,

the equilibrium adjustment lag parameters λP , λE, and λB interact with the other variables

in each equation in the same manner as the Population-Employment Model.

In the two-equations system between population and employment, the variables P i,t and

Ei,t represent the labor market levels of population or employment for a given area. The

reasoning for the population equation is that residents choose their location based upon

9 While fiber optic broadband access requires new fiber to be installed from the local exchange to the
subscriber, other forms of broadband can use existing networks. Cable modem systems use existing hybrid
fiber-coax Cable TV networks. xDSL systems use the twisted copper pair traditionally used for voice services
by the plain old telephone system. Broadband powerline broadband technology uses the power lines feeding
into the subscriber’s home to carry broadband signals (Corning, 2005).
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not only the available employment opportunities in a given area also but, from the larger

commuting zone. Similar reasoning applies for the employment equation; a firm will look at

the larger commuting zone in making its location decision to form or expand. For broadband,

it is unclear if this process also exists as broadband access for a neighbor does not yield

direct benefits. However, broadband access for neighbors could indicate future expansion

and increases in broadband access for which firms or individuals can capture lower prices in

anticipation.

I can substitute in for the endogenous variables for an estimable system:

∆Pi,t = A1ZPi,0 + A2Ei,t−1 + ΦE,AWEEi,t−1 +
A2

λE
∆Ei,t +

ΦE,A

λE
WE∆Ei,t+

A3BBi,t−1 + ΦB,AWBBBi,t−1 +
A3

λB
∆BBi,t +

ΦB,A

λB
WB∆BBi,t − λPPi,t−1 + ui,t (16a)

∆Ei,t = B1ZEi,0 +B2Pi,t−1 + ΦP,BWPPi,t−1 +
B2

λP
∆Pi,t +

ΦP,B

λP
WP∆Pi,t+

B3BBi,t−1 + ΦB,BWBBBi,t−1 +
B3

λB
∆BBi,t +

ΦB,B

λB
WB∆BBi,t − λEEi,t−1 + vi,t (16b)

∆BBi,t = Γ1ZBi,0 + Γ2Pi,t−1 + ΦP,ΓWPPi,t−1 +
Γ2

λP
∆Pi,t +

ΦP,Γ

λP
WP∆Pi,t+

Γ3Ei,t−1 + ΦE,ΓWEEi,t−1 +
Γ3

λE
∆Ei,t +

ΦE,Γ

λE
WE∆Ei,t − λBBBi,t−1 + ωi,t (16c)

The parameters are redefined as ΦE,A = A2φEA, ΦB,A = A3φBA, ΦP,B = B2φPB, ΦB,B =

B3φBB, ΦP,Γ = Γ2φPΓ, ΦE,Γ = Γ3φEΓ, Aj = αjλP , Bj = βjλE, and Γj = γjλB for j = 1, 2, 3.

This larger model nests the Population-Employment Model of 8 under the condition that γ1 =
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γ2 = γ3 = φB = α3 = β3 = 0 so that the broadband process is exogenous to the system.10

This allows for the larger system from equation 16 first to be estimated unrestricted and

then to impose restrictions testing the relationship between the three endogenous variables.

The larger system can also be rewritten in the form:

Pi,t = A1ZPi,0 +
A2

λE
Ei,t+

ΦE

λE
WEEi,t+

A2 (λE − 1)

λE
Ei,t−1+

ΦE (λE − 1)

λE
WEEi,t−1+

A3

λB
BBi,t

+
ΦB

λB
WBBBi,t +

A3 (λB − 1)

λB
BBi,t−1 +

ΦB (λB − 1)

λB
WBBBi,t−1 + (1− λP )Pi,t−1 + ui,t

(17a)

Ei,t = B1ZEi,0 +
B2

λP
Pi,t+

ΦP

λP
WPPi,t+

B2 (λP − 1)

λP
Pi,t−1 +

ΦP (λP − 1)

λP
WPPi,t−1 +

B3

λB
BBi,t

+
ΦB

λB
WBBBi,t +

B3 (λB − 1)

λB
BBi,t−1 +

ΦB (λB − 1)

λB
WBBBi,t−1 + (1− λE)Ei,t−1 + vi,t

(17b)

BBi,t = Γ1ZBi,0 +
Γ2

λP
Pi,t+

ΦP

λP
WPPi,t+

Γ2 (λP − 1)

λP
Pi,t−1 +

ΦP (λP − 1)

λP
WPPi,t−1 +

Γ3

λE
Ei,t

+
ΦE

λE
WEEi,t +

Γ3 (λE − 1)

λE
Ei,t−1 +

ΦE (λE − 1)

λE
WEEi,t−1 + (1− λB)BBi,t−1 + ωi,t (17c)

The three-equation system is more flexible than the two-equation system, but there is

a concern that the three equation system may not be necessary. Excessive modeling (i.e.

treating broadband as endogenous when it is not) can lead to imprecise standard errors with

associated variables of interest. If broadband is not in fact endogenous, then the Population-

Employment Model is the relevant one for robustness checks for the types of jobs or people

that may be attracted by broadband deployment. However, if the process is endogenous,

then robustness checks will also focus on what types of areas are more likely to attract

10 See appendix A.2 for details.
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broadband as a way to understand what types of economies benefit most from broadband.

4 Econometric Strategy

4.1 System Typologies

The two models that are identified in equations 8 and 16 represent different approaches to

modeling simultaneity, as discussed in Rey and Boarnet (2004). Rey and Boarnet lay out

a taxonomy of simultaneous equation models that describe simultaneity through what they

term feedback simultaneity or spatial simultaneity. Spatial simultaneity can arise from a

spatial cross-regressive or spatial autoregressive process. Traditional simultaneous equations

models contain what Rey and Boarnet described as feedback simultaneity, which results

from an endogenous variable appearing on the right hand side of an equation. Because

all simultaneity involves some sort of feedback mechanism, I refer to this as traditional

feedback or traditional simultaneity. Equation 8 includes traditional feedback effects through

the interconnection of ∆P and ∆E while equation 16 contains these feedbacks as well as

including feedback through the inclusion of ∆BB. The presence of traditional simultaneity

within the population and employment has been known since Steinnes and Fisher (1974)

and the typical methods for correcting for this in estimation is some sort of a two-stage least

squares procedure or maximum likelihood estimation.

A non-spatial simultaneous equation model takes the form of:

Y1 = α0 + α1Y2 + ε1 (18a)

Y2 = β0 + β1Y1 + ε2 (18b)

Because each equation is a function of the other, a simple ordinary least squares procedure on

a single equation would have α2 (β2) correlated with its error term, and hence the estimated

coefficients would be biased. To address this issue, models of this sort are typically solved
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via a multiple staged estimation approach or maximum likelihood methods.

4.1.1 Spatial Cross-Regressive Simultaneity

Spatial cross-regressive simultaneity typically appears along with feedback and represents a

roughly comparable problem. A spatial cross-regressive model takes the following form:

Y1 = α0 + α1Y2 + α2W2Y2 + ε1 (19a)

Y2 = β0 + β1Y1 + β2W1Y1 + ε2 (19b)

where Wi is an n × n matrix that defines the neighborhood set between Yi and Yj. The

terms α2 and β2 serve as the spatial feedback from the neighboring values of the endogenous

variables (e.g. labor market characteristic as in Boarnet (1994)). The purpose of this partic-

ular spatial feedback is to take increase the channels of which two endogenous explanatory

variables are spatially connected. Boarnet originally applied this logic to the relationship

between employment and population, using a spatially defined weighted average of popula-

tion in the employment equation and a spatially defined weighted average of employment in

the population equation. The intuition is that households will locate within a region near

their place of employment but not necessarily within the boundaries of the region where the

place of employment is. The same goes for where a firm might locate, their decision is not

limited to population in a certain jurisdiction but includes the surrounding areas from which

people can feasibly commute.

There are a few options for the estimation structure for this particular typology. If

the theoretical underpinning of the spatial relationship between Y1 and Y2 is ambiguous, or

allows for the possibility that there may not be a spatial relationship, then equation 19 can

be estimated in the current form with emphasis on whether or not α2 = 0 as well as β2 = 0.

An unrestricted regression is appealing if the main interest is to answer whether or not a

labor market relationship exists.
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However, it is typically the case that the structural relationship from which equation 19

is derived will have restrictions in some form that generally imply α1 = α2 and β1 = β2. If

this is the case, then there are two choices for the econometrician: to test if this relationship

holds, or to impose the relationship a priori.

4.1.2 Spatial Autoregressive Simultaneity

The other typology class that Rey and Boarnet (2004) describes is a spatially lagged de-

pendent variable within each equation. This relationship is typically referred to as a spatial

autoregressive (SAR) model in the spatial econometrics literature. A general form of this

can be described as:

Y1 = α0 + α1Y2 + α2W1Y1 + ε1 (20a)

Y2 = β0 + β1Y1 + β2W2Y2 + ε2 (20b)

The general intuition behind spatially lagging the dependent variable here is to account for

potential spread or backwash effects in the dependent variable of interest (as in Henry et al.

(2001)). In the context of an employment equation, this means that when there is a rise in

the level of employment of location i, then its neighbors in location j will experience either

an increase in their level of employment (α2 > 0, spread effect) or a decrease in their level of

employment (α2 < 0, backwash effect). The causes for the increase or decrease stem from an

empirical application to theory that either agglomeration effects exist or that consolidation

of economic activity is occurring. This issue was first applied by Henry et al. (1997) with

particular focus on the impacts of urban growth on rural areas.

If this feedback mechanism exists in a system of simultaneous equations and is not ac-

counted for in estimation procedures, then the estimators will be biased. Anselin (1988)

shows that ordinary least squares estimates for a SAR process are also biased and so differ-

ent estimators need to be applied.
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There may be cases where economic theory suggests a SAR process within a system of

simultaneous equations. Other times, it may be the case that these spread or backwash effects

existence within the relationship is the question of interest. Similar to the spatial cross-

regressive effects, introducing a SAR process (as in equation 20) or testing whether the spatial

relationship exists will imply different strategies for estimation. A theory driven approach is

necessary to verify if a SAR process needs to be accounted for. If theory suggests that the

relationship exists, then the system of equations needs to be estimated that accounts for the

spatial relationship. These models can employ instrumental variable estimators (Kelejian and

Prucha, 2004), maximum likelihood estimators, generalized method of moments estimators,

or through Bayesian methods. If the spatial relationship in equation 20 needs to be tested but

not imposed, one might consider estimating the system with some of the methods mentioned

previously and then testing whether or not α2 = 0 and or β2 = 0.

Finally, it bears mention that all three forms of simultaneity may be present and it can

be the case that specific equations within the system exhibit some of these classes while the

other equations do not. With a system of two equations, Rey and Boarnet (2004) define 35

unique typologies involving the three characteristics of traditional feedback, spatial cross-

regressive, and spatial lag. The number of unique typologies increases with the number of

equations involved in a system. It is not within the scope of this paper to classify all the

typologies of the relationship between broadband, employment, and population. The purpose

of this paper is to test for the causal relationship between the three economic processes and

to use the insight of how these feedback mechanisms affect the estimation procedure and

interpretation of results. My approach to doing so is discussed in the next section.

4.2 Estimation of Spatial System

4.2.1 Notation for System

I follow Kelejian and Prucha (2004) in using full information generalized spatial three stage

least squares estimators to estimate equations 8 and 16. Use of these estimators potentially
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allows for causal inference on the relationship between broadband, employment, and popu-

lation growth. Under certain assumptions, the estimators are consistent and asymptotically

normally distributed. The proofs are beyond the scope of this paper, but can be found in

Kelejian and Prucha (2004). The methods for these estimators are described and applied to

equations 8 and 16 below.

In order to maintain notational consistency with Kelejian, I define the following system

of n cross sectional units:

Yn = YnB +XnC + Y nΛ + Un (21)

with the vectors defined as:

Yn = (y1,n, . . . , ym,n)

Xn = (x1,n, . . . , xm,n)

Un = (u1,n, . . . , um,n)

Y n =
(
y1,n, . . . , ym,n

)
Wn = (W1,n, . . . ,Wm,n)

yj,n = Wnyj,n, j = 1, . . . ,m

where yj,n is the n × 1 vector of cross sectional observations of the dependent variable

in the j-th equation; xl,n is the n × l vector of cross sectional observations of the l-th

exogenous variable; uj,n is the n × 1 disturbance vector in the j-th equation; Wn are n × n

spatial weighting matrices of known constants, and B, C, and Λ are correspondingly defined

parameter matrices of dimension m×m, k ×m, and m×m. The vector yj,n is referred to

as a spatial lag of yj,n. The system contains m equations within it.

In addition, I allow for spatial autocorrelation in the disturbances of the following form:
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Un = UnR + En (22)

with the vectors defined as:

En = (ε1,n, . . . , εm,n)

R = diagmj=1 (ρj)

Un = (u1,n, . . . , um,n)

uj,n = Wnuj,n, j = 1, . . . ,m

where εj,n denotes the n× 1 vector of errors and ρj the spatial autoregressive parameter in

the j-ith equation. The vector uj,n is typically referred to as the spatial lag of uj,n. Within

this system, it is assumed that the mean of the error terms for each equation are zero, each

equation’s error has its own variance, and that the errors across equations are allowed to

covary:

E [εj,n] = 0, E
[
εj,nε

′
k,n

]
= σjkIn (23)

Using compact notation, let Zj,n =
(
Yj,n, Xj,n, Y j,n

)
denote the matrix of observations of

right hand side variables that appear in the j-th equation, and let δj =
(
β′j, γ

′
j, λ
′
j

)′
denote

the corresponding parameter vector. I can then rewrite the j-th equation in equations 21

and 22 as:

yj,n = Zj,nδj + uj,n (24)

uj,n = ρjWnuj,n + εj,n
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Further, applying a Cochrane-Orcutt11 transformation to equation 24 in order to account

for spatial dependence in errors yields:

y∗j,n (ρj) = Z∗j,n (ρj) δj + εj,n (25)

where

y∗j,n (ρj) = yj,n − ρjWnyj,n

Z∗j,n (ρj) = Zj,n = ρjWnZj,n

Stacking the equations from 25 yields

y∗n (ρ) = Z∗n (ρ) δ + εn (26)

where

y∗n (ρ) =
(
y∗1,n (ρ1)′ , . . . , y∗m,n (ρm)′

)′
Z∗n (ρ) = diagmj=1

(
Z∗j,n (ρj)

)
εn (ρ) =

(
ε′1,n, . . . , ε

′
m,n

)′
and ρ = (ρ1, . . . , ρm)′ and δ = (δ′1, . . . , δ

′
m)′. Clearly, the residuals can be formed from

Eεnε
′
n = Σ⊗ In where Σ = (σjk). While this implies homoskedasticity, the results generalize

for any consistent variance-covariance matrix.12

11 Cochrane and Orcutt (1949) details how this method applies to time-series data. However, Kelejian
and Prucha (1997) extended this time-series technique to spatial methods.

12 Kelejian and Prucha (2007) provides a framework for a non-parametric heteroscedasticity and auto-
correlation consistent (HAC) estimator of the variancecovariance (VC) matrix for a spatial models which is
utilized for robust standard errors.
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4.2.2 Estimation Procedure

To gain consistent estimation of the general form of a spatial system of simultaneous equa-

tions as shown in equation 26, the first step is to estimate the model parameters δj from 24

by using a two-stage least squares estimator to each of the m equations:

δ̃j,n =
(
Z̃ ′j,nZj,n

)−1

Z̃ ′j,nyj,n (27)

where

Z̃j,n = PHZj,n =
(
Ỹj,n, Xj,n, Ỹ j,n

)
Ỹj,n = PHYj,n

Ỹ j,n = PHY j,n

PH = Hn (H ′nHn)
−1
H ′n

and where Hn is the matrix of instruments which is formed as a subset of linearly independent

columns of (Xn,WnXn,W
2
nXn, . . .). Based on δ̃j,n, I can compute two-stage least squares

residuals:

ũj,n = yj,n − Zj,nδ̃j,n (28)

Once the two-stage least squares estimators are calculated for each equation, the residuals

can be tested for spatial dependence with a Moran’s I test proposed in Kelejian and Prucha

(2001). Potentially, spatial autocorrelation could be due to some factor that is not accounted

for that varies spatially. While failing to correct for this autocorrelation does not bias the

estimators, this does affect the standard errors which in turn would affect inference on the

structural parameters of interest.

To correct for spatial dependence in the error term, spatial autoregressive parameters
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ρj are estimated using the residuals obtained via the first step. A generalized method of

moments estimator proposed by Kelejian and Prucha (1999) is used for estimators of ρj and

σjj. The estimators, defined as ρ̃j and σ̃jj, are the nonlinear least squares estimators that

minimize:

gj,n −Gj,n


ρj

ρ2
j

σjj



′ gj,n −Gj,n


ρj

ρ2
j

σjj




where

Gj,n =
1

n


2ũ′j,nũj,n −ũ′j,nũj,n n

2ũ
′
j,nũj,n −ũ

′
j,nũj,n Tr (W ′

nWn)

ũ′j,nũj,n + ũ
′
j,nũj,n −ũ

′
j,nũj,n 0

 , gj,n =
1

n


ũ′j,nũj,n

ũ
′
j,nũj,n

ũ′j,nũj,n


with ũj,n = Wnũj,n, and ũj,n = W 2

n ũj,n. An alternative way of estimating the parameters

ρj and σjj could be through maximum likelihood estimators. The advantage to using this

generalized method of moments estimator is that it is computationally simple and does

not depend on normality assumptions like a maximum likelihood estimator would in this

situation.

With spatial autoregressive parameters consistently estimated, a Cochrane-Orcutt trans-

formation can then be applied as shown in equation 25. The estimator ρ̃j,n can replace ρj

which allows for δk to be estimated using more information:

δ̂Fj,n =
[
Ẑ∗j,n (ρ̃j,n)′ Z∗j,n (ρ̃j,n)

]−1

Ẑ∗j,n (ρ̃j,n)′ y∗j,n (ρ̃j,n) (29)

with
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Ẑ∗j,n (ρ̃j,n) = PHZ
∗
j,n (ρ̃j,n)

Z∗j,n (ρ̃j,n) = Zj,n − ρ̃j,nWnZj,n

y∗j,n (ρ̃j,n) = yj,n − ρ̃j,nWnyj,n

The estimators derived from equations 29 and 27 are identical if ρj = 0. This gives reason

to tests for spatial dependence for each equation in the system. If the residuals from each

equation in 28 do not exhibit spatial dependence, then the general spatial two-stage least

squares (GS2SLS) procedure is not necessary.

Utilizing all relevant information about the correlation across equations, the full infor-

mation generalized spatial three stage least squares (FGS3SLS) estimator is defined:

δ̆Fn =
[
Ẑ∗j,n (ρ̃j,n)′

(
Σ̂−1
n ⊗ In

)
Z∗j,n (ρ̃j,n)

]−1

Ẑ∗j,n (ρ̃j,n)′
(

Σ̂−1
n ⊗ In

)
y∗j,n (ρ̃j,n) (30)

where Σ̂n is estimated as a m×m matrix whose (j, l)-th element is:

σ̂jl,n = n−1ε̃′j,nε̃l,n

ε̃j,n = y∗j,n (ρ̃j,n)− Z∗j,n (ρ̃j,n) δ̆Fj,n

This estimator is asymptotically normal under certain conditions given in Kelejian and

Prucha (2004). The FGS3SLS is considered the preferred estimator for both the Population-

Employment Model and Extended Model for Broadband as it accounts for feedback, spatial,

and cross-equation effects, all of which are theorized to be important components in the

models.
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4.3 Identification Strategy

The models involving two and three equations in the system – i.e., equations 8 and 16 –

provide a starting point for our estimation procedure. In both the Population-Employment

and Extended models, the equilibrium adjustment parameter (λE, λP , and λB) is identi-

fied in each equation from the lagged dependent variable. This distinction allows for all

other parameters to be identified using some algebraic manipulations of the other estimated

parameters which are a combination of multiple structural parameters.

4.3.1 Structural Parameter Estimation

Estimation of the system of equations in 8 and 16 gives a reduced form estimate of the

parameters of interest. In order to correctly assess causality, the structural parameters need

to be recovered and tested as described in tables 1 and 2. The parameters from equation 8

of the Population-Employment Model can be illustrated in vector form:

δ =



A1
A2
ΦE
A2
λE
ΦE
λE
−λP
B1
B2
ΦP
B2
λP
ΦP
λP
−λE


=



α1λP
α2λP

α2φEλP
α2λP
λE

α2φEλP
λE
−λP
β1λE
β2λE

β2φPλE
β2λE
λP

β2φP λE
λP
−λE


(31)

An unrestricted estimation procedure would not account for the interconnectedness of

the variables with the equilibrium lagged adjustment parameters λP and λE. In order to test

the hypotheses for the Population-Employment Model as shown in table 1, I need to consider

the distinction between Ai and αi as well as Bi and βi. By applying the delta method, I

can recover estimators for the structural parameters (Hayashi, 2000). Consider q nonlinear

restrictions:

r (δ0) = 0 (32)
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where r(·) is a q-vector valued function and δ0 is the true value of the parameters of interest.

With a candidate estimator, δ̂, taking a first order Taylor’s series expansion about r
(
δ̂
)

about δ0 leads to:

r
(
δ̂
)

= r (δ0) +R (δ∗) r
(
δ̂ − δ0

)
(33)

where δ∗ is a convex combination of δ̂ and δ0 and R (·) is the derivative of r (·) with respect

to the parameter vector δ. With a consistent estimator of δ̂, I can replace δ∗ by δ0 which

leads to an asymptotic result:

√
nr
(
δ̂
)
'
√
nR (δ0)

(
δ̂ − δ0

)
(34)

The above result allows us to constructing a Wald test statistic which handles non-linear

restrictions:

W ≡ r(δ̂)′
[
R(δ̂)Σ̂R(δ̂)′

]−1

r(δ̂) −→
d

χ2(#r) (35)

where #r is the number of restrictions imposed in the function r(δ̂).

In the Population-Employment Model, there are four parameters of interest: α1,BB, α2,

β1,BB, and β2. Let r(·) be a function of the parameters from the model, then I can rearrange

the estimated reduced form parameters in such a way to identify the structural parameters

of interest:

r0 (δ) =



A1

λP

A2

λP

B1

λE

B2

λE


=



α1

α2

β1

β2


(36)

where I would like to evaluate each of these restrictions one at a time as well as across equa-

tions. This can be done by constructing a Wald test at which I assume the true parameter δ
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and take a Taylor series expansion about this value. This allows for inference upon the null

hypothesis of H0 : r0(δ) = 0:13

R0(δ) ≡ ∂r0 (δ)

∂δ′
=


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E
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

′

(37)

The test can allow for testing of multiple restrictions, which is important in distinguishing

whether or not α2 and β2 are jointly different from 0. The comparable derivation for the

Extended Model for Broadband can be found in the Appendix Section A.2.

4.3.2 Moran’s I Tests

Use of spatial econometric methods can help correct for biased estimators when spatial

dependence is present in the data. At the same time, excessive modeling of spatial processes

when there is no evidence for spatial dependence may lead to inefficient estimators and adds

unnecessary complexity to a model. Therefore, testing for spatial dependence is a crucial first

step to determine if the more complicated estimators (2SLS and FGS3SLS) are necessary.

Moran’s I Test for spatial dependence is applied to justify the need for the spatial methods

employed in this paper. First proposed in Moran (1950), the Moran’s I test is used to detect

spatial dependence in an irregular lattice process.14 The test statistic is defined as:

13 This involves taking the derivative of equation 36 with respect to the true parameters in δ. Note that
the above matrix is transposed so that each row in the matrix reflects the derivative of the first restriction
with respect to the parameter vector δ.

14 Spatial data can be thought of as resulting from observations on the stochastic process:

Z(s) : s ∈ D ⊂ Rd
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I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2
(38)

where N is the number of locations indexed by i and j, X is the variable of interest, X̄ is the

mean of X, and wij is an element of the spatial weights matrix which defines the neighbors

for the process X. Under the null hypothesis of no spatial dependence, the expectation of the

Moran’s I test statistic is −1
N−1

. The value of the test statistic will approach 0 under the null

of no spatial dependence as the number of locations increases. The test statistic can take on

values between -1 and 1, where a test statistic approaching 1 results in positive dependence

(i.e. high values are clustered by high values as well as low values clustered by low values).

A test statistic close to -1 indicates negative dependence, which results in repulsion of the

variable of interest. In a sense, although not directly, a Moran’s I Test Statistic is analogous

to a simple correlation coefficient which also ranges from -1 to 1 with the interpretation of

negative and positive correlation.

As described in Kelejian and Prucha (2001), the residuals from the two-stage least squares

estimators of equation 27 can be tested using the proposed Moran’s I Test to determine if a

Cochrane-Orcutt Transformation of the data is justified. If the residuals indicate a rejection

of the null hypothesis, estimating the spatial autoregressive parameters ρj can help correct

for the potentially unobservable spatial process that is manifesting itself through spatial

dependence in the data.

4.3.3 Structural Spatial Parameters

A further concern for spatial processes involved in the data arise from defining the markets

for population, employment, and broadband through a location’s neighbors. This was origi-

where Z is a variable observed at a location s defined using some (d × 1) vector of coordinates. In lattice
data, the domain D is fixed and discrete with a countable number of mutually exclusive locations. Where
a regular lattice involves an equally spaced grid of locations, this also implies that each location (except on
the edges) has the same number of neighbors. With an irregular lattice, locations are not equally spaced on
a grid and locations generally do not have the same number of neighbors. Lattice data are also referred to
as areal data.
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nally proposed in Boarnet (1994) for the residential and labor markets as a way to account

for households commuting across municipal boundaries to their place of employment. In

the two equation model, I can use the parameter vector from equation 31 to construct a

restriction vector to test whether the spatial parameters, φP and φE, influence the model.

I can construct a Wald Test via the Delta Method in a similar fashion to the structural

parameters in section 4.3.1:

r1 (δ) =

ΦE
A2

ΦP
B2

 =

φE
φP

 (39)

Taking the derivative of r1 (δ) with respect to δ′ in equation 31 yields:

R1(δ) ≡ ∂r1 (δ)

∂δ′
=



0 0
ΦE 0
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ΦEλE 0
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0
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0 0
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0 1

B2
0 ΦPλP

0
λP
B2

0 0



′

(40)

The comparable derivatives for Extended Model for Broadband can be found in Appendix

Section A.2.1

5 Data Description

The units of observation for this study are counties in the contiguous 48 states of the US

over the period spanning from 2008 to 2012. Table 3 provides some summary statistics on

the endogenous variables of interest
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Table 3: Summary Statistics

2008 2010 ∆ 2008 to 2010
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

# of BB Providers 12.4 6.9 12.2 6.6 -0.2 2.0
–Neighbors 12.7 5.1 12.5 5.0 -0.2 1.1
Employed 42,312 149,530 40,088 140,464 -2,224 9,763
–Neighbors 44,217 92,396 41,910 86,998 -2,307 5,836
Establishments 2,747 10,783 2,719 10,798 -29 284
–Neighbors 2,843 6,613 2,814 6,626 -29 169
Population 97,161 309,345 98,833 314,772 1,672 7,107
–Neighbors 101,297 202,953 103,071 206,785 1,775 4,646
Migration — — — — 39 3,494
–Neighbors — — — — 61 1,800

Sample includes 3,109 counties in the lower 48 states of the United States.

5.1 Broadband Data

Data on broadband availability were taken from the FCC Form 477 database.15 For each

county, the FCC reports the total number of broadband providers. The number of providers

reflects the supply of broadband services within the county which proxies the broadband

availability for an area.

There are limitations with these proxies, however. For total number of providers, there is

no accounting for the size, quality, or price these firms provide. Neither does the data distin-

guish between firms providing service to households, to firms, or to both. For confidentiality

purposes, counties with 1-3 providers are suppressed so as to not identify the providers.16

Most importantly, the data obscures consolidation among local broadband providers. The

impact of this, in many circumstances, would be fewer providers but no change (or even

growth) in the local supply of broadband services. There is no reason to believe that some

areas are systematically affected more by consolidation than others, which would create a

bias in estimates. However, because broadband services are likely mismeasured, the result

15 The FCC definition of broadband is providers offering, or subscribers with, fixed-location Internet access
connections faster than 200 kilo-bits per second.

16 In cases where the data are suppressed, observations were recoded to take a value of 2 to be consistent
with similar studies in the literature using FCC data.
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Figure 1: US Broadband Availability Change from 2008 to 2010

of which is that the uncertainty of the estimators increases and should be reflected in the

standard errors.

5.2 Employment Data

County level data on total employment and number of establishments were taken from the

Quarterly Census of Employment and Wages (QCEW) of the Bureau of Labor Statistics

(BLS). The QCEW serves as a near census of monthly employment and quarterly wages by

6-digit North American Industry Classification System (NAICS) at the county level. Data

are suppressed when there are fewer than three firms in an industry, where the employment
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of a single firm accounts for over 80 percent of an industry, or at the special request of a

State if there is reason to believe that disclosure of information pertaining to an industry

would violate a State’s disclosure provisions.17

Figure 2: Employment Change from 2008 to
2010

Figure 3: Establishment Change from 2008 to
2010

The effects of The Great Recession can be seen to be widespread across the United States,

although not necessarily of the same magnitude, with figures 2 and 3. While the change in

employment was overwhelmingly negative across the United States, the change in number

of establishments was positive in some areas during this time. An establishment is defined

by the BLS as “a single economic unit, such as a farm, a mine, a factory, or a store, that

produces goods or services.” The net change in establishments between 2008 and 2010 does

not give insight to total births and total deaths of establishments18.

5.3 Population Data

The Census Bureau provides county level estimates of population from 2008 to 2010. Since

the Census of Population occurs at the beginning of each decade, county level population

17 Suppression is found in the data for some NAICS industry classes at the county level, but it is not an
issue when all NAICS industry classes are aggregated at the county level.

18 In Kolko (2012), he uses the National Establishment Time Series (NETS) data which is a panel of
all establishments in the United States. These data can give insight into the total births and deaths of
establishments. However, due to financial constraints, this paper is unable to use such data.
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for 2010 was taken from the 2010 Census of Population and Housing. For 2008 and 2010,

the Intercensal Population and Housing Unit Estimates provided by the Census were used

to obtain population estimates. These estimates of county level population are based on the

expected birth rates and death rates from the initial demographics of the county. The 2008

estimate is bench-marked to the 2000 Census while the 2010 estimate is bench-marked to

the 2010 Census.

Figure 4: Net Migration from 2008 to 2010

The changes in population levels for each county are estimated using demography models

and therefore it is not appropriate to think of population changes between 2008 to 2010 to

be movements in populations or households. Instead, migration data from the Internal
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Revenue Services (IRS) is used for changes in population. These data come from filed tax

returns using Form 1040, 1040A, and 1040EZ processed by the IRS for all returns filed by

late September of the filing year. This covers 95 to 98 percent of the individual income tax

filing population with poor and rich people underrepresented in this data because they are

groups most likely to not file taxes or file taxes after September. A migrant is determined

by the Census checking codes in tax forms with the previous year’s tax forms and comparing

geographic codes. Individuals are presumed to migrate when the geographic codes do not

match. From these data provided (by the Census), the IRS can then determine the previous

county of residence and their destination county of residence for said tax year. These data

are then aggregated for each origin-destination county pair to provide number of returns

(approximates households), number of exemptions (approximates population), and aggregate

adjusted gross income for each origin to destination.

The pattern of migration across the United States during this time can be seen in figure 4.

The migration patterns for this two year window is similar to the migration patterns that

have been seen within the United States since 2000, although one side-effect of The Great

Recession was that the migration rates slowed during this two year window.

5.4 Control Variables

Within both the Population-Employment and Extended models, controls are chose to con-

form to those found in the literature. The set of control variables in the Z vectors serve as

initial values which determine the equilibrium levels that a regional economy will converge

toward in the population, employment, and broadband equations. I choose to use 2008 as the

year for the initial conditions of control variables so that they will still be related to a change

across the years of 2008 to 2010 but also are not simultaneously determined by changes in

population or employment as the values in 2010 would be. Lagging the variables too much

would run the risk of being uncorrelated with any current variables in the system and fail to

identify any parameters of interest. The control variables are chosen to be consistent with
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the literature on broadband, migration, and firm location studies.

Table 4: Summary Statistics: Control Variables

2008
Variable Mean Standard Deviation

Median Home Value $130,914 79,509
Median Household Income $45,463 11,778
Average Wages (weekly) $633 142
Taxable Wages (annual) $9,000 3,531
Unemployment Rate 5.76% 2.07
Housing Permit Start-ups 446 1,549
Share with Bachelor’s Degree 19.4% 8.76
Natural Amenity Index .0559 2.28
Percent Vacation Home Share 2.96% .232
TPI .0043 .499
Highway Density (×10−4) 2.06% 1.41

Sample includes 3,109 counties in the lower 48 states of the United States.

County unemployment rates were obtained from the Local Area Unemployment Statistics

(LAUS) from the BLS. This monthly series tracks total employed and unemployed at the

county level and provides an estimate for the annual unemployment rate that is seasonally

adjusted. This is a control for labor market conditions and is used only in the employment

equation.

The Census Bureau also provides county level data on percent of population with a

bachelor’s degree or higher, median value of owner-occupied housing units, median household

income, and share of vacation homes. Percent of population with a bachelor’s degree or higher

is used in the employment equation to control for firms locating in areas with differing levels

of human capital. Median value of owner-occupied housing units and median household

income are used as controls in the population equation as a way to proxy for cost of living

as well as the types of households that reside in the county. Share of vacation homes are a

control in the population equation to account for any retirees, those presumably unaffected

by labor market conditions but still mobile, within a county. Data on permits granted to

housing start-ups at the county level is also used as an instrument for broadband providers.
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Areas with older homes face higher costs for providing broadband access to than newer

homes. Because of the shared fixed costs of infrastructure with newer housing developments,

broadband providers should be positively correlated with housing permits.

Additional non-economic controls include the density of roads in a county, a natural

amenity index for each county, and topography index for each county. Road density was

calculated with a 2005 ESRI shape file of roads and ArcGIS software. Road density is the

percentage of land area that highway covers in a county and is used in the employment

equation to proxy potential transportation costs that a firm may encounter. The USDA-

ERS provides data for the natural amenity index. The index takes into account temperate

temperatures, hours of sunlight, relative humidity, and the spatial variation of land char-

acteristics within counties to approximate scenic views (e.g., plains, tablelands, plains with

hills or mountains, open hills or mountains, and hills and mountains). The natural amenity

index is highly correlated with population movements since the 1970s in the United States

and is used in the population equation McGranahan (1999).

A topography index variable is calculated through shapefiles from DIVA-GIS.org and

the R function terrain() from the raster package. The index is the topographic position

index (TPI) which is used to calculate topographic slope positions within a grid where the

higher values are associated with more rugged terrain19. This is used as an instrument for

broadband providers in all equations as Kolko (2012) demonstrated that costs to deploy

broadband are correlated with the terrain characteristics.

6 Results

This section presents results for both the Population-Employment Model and Extended

Model for Broadband as well as a discussion on the implications of the findings. Results are

presented for the Population-Employment Model and Extended Model for Broadband, and

19 Similar topological indexes were considered (such as Terrain Ruggedness Index) and gave qualitatively
similar results.
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then robustness checks across NAICS industry classifications are performed.

As an initial diagnostic test to assess the applicability of spatial methods, the Moran’s

I tests for spatial dependence of total employment (0.24), total establishments (0.23), pop-

ulation (0.13), and broadband providers (0.53), all strongly reject the null hypothesis of

spatial independence (all p-values <0.001). The spatial weights matrix for the test are based

on a contiguity measure of neighbors. Other specifications for neighbors were also used,20

these similarly resulted in rejection of the null hypothesis of spatial independence. Although

these variables separately indicate spatial dependence, this does not necessarily imply that a

model of employment growth with lagged population and broadband growth will also exhibit

spatial dependence but they do merit further spatial analysis.

6.1 Population-Employment Model

6.1.1 Reduced Form Results

The Population-Employment Model is estimated with three different estimators: Ordinary

Least Squares (OLS), Generalized Spatial Two-Stage Least Squares (GS2SLS), and Full

Information Generalized Three-Stage Least Squares (FGS3SLS).21 There are two different

specifications for employment in order to try and tease out differing aspects of the labor

market: total employed and number of establishments. Results are presented in tables 5 and

6 for the reduced form parameters with each column indicating a different estimator.

With the OLS results, there is no correction for the simultaneous relationship between

population and employment or any spatial effects. The OLS results can be seen as a näıve

approach to evaluating the Population-Employment Model. The GS2SLS estimator, based

on equation 29, corrects for simultaneity and spatial dependence for the labor market ef-

fects associated with population and employment. The FGS3SLS estimator comes from

20 Distance based measure and k-nearest neighbors were used with varying levels of distance and k.
21 For computational purposes, all of the variables have been transformed to z-scores for efficient inversion

of matrices in the estimation procedures. Since the purpose of estimation is inference on whether or not
structural parameters differ statistically from zero, this does not alter the interpretation of Wald tests.
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Table 5: Population-Employment Model: Reduced Form Population Equation (∆P )

Emp. Variable: Total Employment No. of Establishments

Covariates OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

BB0 (A1,BB) 0.2907◦ 0.5381• 0.3939◦ 0.2689• 0.3642• 0.2774
(0.1406) (0.1709) (0.1719) (0.1022) (0.1289) (0.2777)

Et−1 (A2) 0.3902 0.5725 1.1823 -0.9084 -0.6801† -0.3439
(0.7306) (0.6535) (0.741) (0.7672) (0.3903) (0.7369)

WEEt−1 (ΦE) -0.4074 -1.0398† -0.8902 0.0745 0.1095 0.2129
(0.2807) (0.619) (0.8318) (0.1251) (0.094) (0.1775)

∆E (A2

λE
) 0.7126† 1.0959 1.937† 0.0541 -0.4571 -1.3787†

(0.3868) (0.9657) (1.1258) (0.0873) (0.3224) (0.8117)
WE∆E (ΦE

λE
) -0.5918◦ -1.2457† -1.1183 -0.014 0.2663 0.5367

(0.2983) (0.6931) (0.9393) (0.0933) (0.2942) (0.5283)
Pt−1 (−λP ) -0.4708 -0.3889 -0.1235 0.1459 -0.1214 -0.4275

(0.7263) (0.5321) (0.6676) (0.599) (0.4695) (0.9831)

Moran’s I statistic 0.1647 0.0179 -0.0393 0.1494 0.0148 -0.1281
P-Value 0 0.0863 0.0002 0 0.154 0

Robust standard errors in parenthesis. Significance at the 1%, 5%, and 10% levels indicated
by •, ◦, and †, respectively. Moran’s I test is on the residuals with a spatial weight matrix
based on contiguity of counties. Controls include: median home value, natural amenity index,
share of vacation homes, share of population above 65, share of population between 4-17 in
poverty, and a dummy for rural counties.

equation 30 and further extends the GS2SLS estimator by accounting for cross-equation

correlation in the system of equations. The FGS3SLS is preferred to the GS2SLS estimator;

both are preferred to the OLS estimator.

The parameters of interest are the coefficients associated with the broadband variable,

BB0, in the population equation (A1,BB) and the employment equation (B1,BB). Inspection

of these reduced form parameters indicates that there may be some evidence that “people

follow broadband” via inspection of all of the estimators except for FGS3SLS, where number

of establishments is used for the employment variable. The positive, and significant, relation-

ship between total number of broadband providers in 2008 and change in county population

from 2008 to 2010 indicates that more broadband providers is associated with an increase
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Table 6: Population-Employment Model: Reduced Form Employment Equation (∆E)

Emp. Variable: Total Employment No. of Establishments

Covariates OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

BB0 (B1,BB) 0.0114 0.0988† 0.0619 -0.3121• -0.1991 0.1174
(0.0229) (0.0531) (0.0523) (0.0843) (0.1675) (0.2452)

Pt−1 (B2) -0.2187 -0.2806† -0.2301 -0.125 -0.1706 -0.221
(0.2584) (0.164) (0.176) (0.8529) (0.6474) (0.6794)

WPPt−1 (ΦP ) -0.0911 -0.0632 -0.0625 0.0659 0.1182 0.0909
(0.076) (0.048) (0.0509) (0.1568) (0.1285) (0.1897)

∆P (B2

λP
) 0.1115◦ 0.033 0.1096 0.0836 -0.1104 -0.6634

(0.0511) (0.1248) (0.1185) (0.1291) (0.3942) (0.6041)
WP∆P (ΦP

λP
) -0.0707† -0.0131 0.0007 -0.131 -0.0472 -0.1649

(0.0429) (0.0574) (0.0566) (0.0962) (0.1202) (0.2956)
Et−1 (−λE) -0.7272• -0.731• -0.7136• 0.2733 0.1567 -0.2556

(0.2615) (0.1294) (0.1422) (0.7489) (0.4416) (0.5616)

Moran’s I statistic 0.2062 0.0227 0.0168 0.208 -0.0019 -0.0085
P-Value 0 0.0303 0.1073 0 0.8789 0.4443

Robust standard errors in parenthesis. Significance at the 1%, 5%, and 10% levels indicated
by •, ◦, and †, respectively. Moran’s I test is on the residuals with a spatial weight matrix
based on contiguity of counties. Controls include: percentage of highways in county, share
of population with at least a bachelor’s degree, average weekly wage, share of taxable wages,
unemployment rate, median household income, share of population above 65, and a dummy
for rural counties.

in residents for a county. Because all variables in the regression have been transformed to

z-scores, the interpretation of the coefficients are in terms of standard deviation increases

in variables. This necessitates the use of the data presented in table 3 in order to address

the magnitude of effects. For example, the FGS3SLS estimator with total employment as

the employment variable indicates that a one standard deviation increase in total number of

broadband service providers in 2008 (approximately 7) would lead to an increase of 0.3939

standard deviations of migrants (one standard deviation is approximately 3,494 people). So

the effects of a county having one more broadband service provider would be, on average,

associated with 200 more migrants between the period of 2008 to 2010.

The coefficients on BB0 in the employment equation (table 6) are not significantly dif-
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ferent from zero. Thus, no significant relationship between broadband and either total em-

ployment or number of establishments is evident. In other words, the data do not support

the claim that broadband is a driver of job growth.

Another relationship of interest for this model is to compare the endogenous variables,

∆P and ∆E, as well as the lagged values of employment and population to determine if “jobs

follow people” or “people follow jobs.” For the Population equation, the results are mixed

across estimators as well as the definition of the employment variable. With the FGS3SLS

estimator for the population equation, there appears to be evidence that “people follow jobs”

when employment is defined as total employed. However, this result reverses to “jobs repel

people” if the definition of employment changes to number of establishments. While these

two interpretations appear to be at odds with each other, one explanation could be that

consolidation of firms within an industry could be occurring at this time. A limitation of the

data available is that this explanation cannot be tested without knowing the composition of

firms within a county22.

6.1.2 Structural Parameter Tests

Because reduced form parameters are a function of the structural parameters of interest, I

need to recover the structural parameters and test whether they are statistically different

from zero, a necessary condition for causality. This is done through a Wald test described in

equation 35 and constructed for each estimator. Whether or not “jobs follow broadband” or

“people follow broadband” are the primary interest here. The preferred estimator to evaluate

this claim is the FGS3SLS estimator as it accounts for spatial autocorrelation, simultaneity,

and cross equation correlation.

Whereas in the reduced form estimates one may have concluded that “people follow

broadband,” the structural parameter of α1,BB does not significantly differ from zero in

22 More finely scaled data, such as NETS data, may be able to address this result. Because the focus of
this paper is on broadband and not necessarily the population and employment relationship, this is left for
future research.
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Table 7: Population-Employment Model: Wald Tests for Structural Parameters

Emp. Variable: Total Employment No. of Establishments
OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

Null Hypothesis

α1,BB = 0 0.4909 0.6116 0.0377 0.0615 0.0704 0.1517
(0.2813) (0.2478) (0.6077) (0.5575) (0.5426) (0.4495)

β1,BB = 0 0.1984 0.329 0.4245 0.1176 0.0991 0.1316
(0.4135) (0.3414) (0.3034) (0.4819) (0.503) (0.4678)

α1 = β1 = 0 0.711 0.6137 0.5183 0.1869 0.1608 0.2981
(0.7008) (0.7358) (0.7717) (0.9108) (0.9227) (0.8615)

α2 = 0 0.1899 0.0548 0.0169 0.0705 0.0477 0.0499
(0.4195) (0.5698) (0.6785) (0.5423) (0.5841) (0.5795)

β2 = 0 0.318 0.3032 0.3876 0.0232 0.0683 0.0297
(0.3464) (0.3534) (0.3171) (0.652) (0.5459) (0.63)

α2 = β2 = 0 0.3365 0.7522 0.6212 0.0932 0.1052 0.0736
(0.8451) (0.6865) (0.733) (0.9545) (0.9487) (0.9639)

φP = 0 0.6223 0.3372 0.0951 0.2715 0.7714 1.0912
(0.2451) (0.3378) (0.5079) (0.3694) (0.2125) (0.1611)

φE = 0 1.4175 2.0678* 1.6966 0.1596 0.7474 0.1073
(0.1247) (0.0783) (0.1015) (0.4428) (0.2173) (0.4933)

P-Values in parenthesis. Significance at the 1%, 5%, and 10% levels indicated by •, ◦, and
†, respectively.

any of the Wald tests constructed. The same can be said about the structural relationship

between broadband and employment as seen for the Wald tests for β1,BB. Given that a

Wald test typically over-rejects the null hypothesis compared to similar tests of non-linear

restrictions such as a Lagrange multiplier or likelihood ratio tests (Hayashi, 2000), the lack of

a significant relationship for both of these parameters casts doubt on claims that broadband

access can be a driver of economic growth for a region. This result is driven by accounting

for movements towards equilibrium levels in population and employment, which are the λ

parameters in each equation. These parameters, λP and λE, are identified from the lagged

level of population or employment, respectively, and represent the rate at which counties are

converging toward an equilibrium level. In order for the system to be stable, these parameters

need to be between 0 and 1 (details of which are described in Appendix A.1). Given that
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these parameters indicate a stable system, they help in identifying how broadband affects

population and employment movements, and within this system the effects of broadband are

not significant.

A secondary concern is whether or not “jobs follow people” or “people follow jobs” in

the system. Identifying this relationship also relies on recovering the structural parameters

in a similar manner to evaluating if broadband impacts population or employment. While

the reduced form parameters are mixed for interpreting this relationship, the structural

parameters fail to indicate a significant relationship between the two. Further, the spatial

relationship between the housing and labor markets, φE and φP respectively, are recovered

and tested via a Wald test. However, the housing and labor market effects do not appear

to be significantly different from zero. This is to be expected given that the relationship

between population and employment is also not significant. This gives concern that the

model may not contain housing and labor markets defined spatially; however, if the models

are estimated with the spatial housing and labor markets removed, the main results remain. I

am unable to detect a significant, structural relationship between broadband and population

and employment.

6.2 Extended Model for Broadband

6.2.1 Reduced Form Results

The Extended Model for Broadband is a richer model that accounts for potential endogeneity

of the broadband deployment decision at the county level. Like the Population-Employment

Model, this model is estimated via OLS, GS2SLS, and FGS3SLS and results are presented as

a way assess whether simultaneity is a concern within the system as a whole. As before, two

different proxies for employment are used – total employment and number of establishments

– in order to gain traction as to whether or not broadband is affecting the productivity of a

firm (total employment) as well as generation of new firms (number of establishments) that

are potentially utilizing broadband. The Population equation is presented in table 8, the
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Employment equation is presented in table 9, and the Broadband equation is presented in

table 10.

Table 8: Extended Model: Reduced Form Population Equation (∆P )

Emp. Variable: Total Employment No. of Establishments

Covariates OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

Eit−1 (A2) 0.3245 0.4151 0.5963 -0.9098 -0.8335◦ -0.5004
(0.7231) (0.5291) (0.5844) (0.7041) (0.3474) (0.6756)

WEEit−1 (ΦEA) -0.1929 -0.3208 -0.3877 0.2231 0.5263• 0.4217
(0.333) (0.64) (0.7798) (0.1499) (0.1372) (0.261)

∆Eit (A2

λE
) 0.6734† 1.0122 1.3441† 0.0584 -0.3538 -1.3172†

(0.3819) (0.6774) (0.8016) (0.0851) (0.2737) (0.7961)
WE∆Eit (ΦEA

λE
) -0.5513† -1.1418† -1.0572 -0.0569 0.0042 0.5685

(0.3062) (0.6797) (0.8148) (0.0918) (0.3028) (0.6162)
BBit−1 (A3) 0.4455• 0.9216• 0.9416• 0.4145• 0.7165• 0.7058•

(0.1698) (0.2123) (0.1997) (0.1268) (0.1774) (0.2686)
WBBBit−1 (ΦBA) -0.3325• -0.9794• -0.8345• -0.3113• -0.7319• -0.5018†

(0.103) (0.2036) (0.1935) (0.0839) (0.1625) (0.2953)
∆BBit (A3

λB
) 0.0864◦ 0.7797• 0.8722• 0.0847◦ 0.7154◦ 1.0873†

(0.0382) (0.2517) (0.222) (0.0399) (0.2893) (0.5627)
WB∆BBit (ΦBA

λB
) -0.0925† -1.295• -1.0421• -0.0716 -0.8645• -0.7787

(0.0537) (0.2761) (0.2412) (0.053) (0.301) (0.5962)
Pt−1 (−λP ) -0.5019 -0.4667 -0.3483 0.0977 -0.1064 -0.4858

(0.7142) (0.4053) (0.4906) (0.5699) (0.4157) (0.8741)

Moran’s I statistic 0.1552 -0.0142 -0.0966 0.1386 -0.0108 -0.1566
P-Value 0 0.1926 0 0 0.3253 0

Robust standard errors in parenthesis. Significance at the 1%, 5%, and 10% levels indicated
by •, ◦, and †, respectively. Moran’s I test is on the residuals with a spatial weight matrix
based on contiguity of counties. Controls include: median home value, natural amenity index,
share of vacation homes, share of population above 65, share of population between 4-17 in
poverty, and a dummy for rural counties.

The coefficients with respect to the lagged broadband variable, BBt−1, in the Population

and Employment equations are roughly the equivalent to the two-equation model if the

regressions are interpreted to have no structural model behind them. While the two-equation

model gives some evidence that “people follow broadband” when the employment variable is

total employment, the extended (three-equation) model displays stronger evidence for this
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Table 9: Extended Model: Reduced Form Employment Equation (∆E)

Emp. Variable: Total Employment No. of Establishments

Covariates OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

Pit−1 (B2) -0.2058 -0.2629 -0.2515 -0.0934 -0.1873 -0.2669
(0.257) (0.1605) (0.1687) (0.8532) (0.6423) (0.6615)

WPPit−1 (ΦPB) -0.1355 -0.1193 -0.1097 0.0107 0.1675 0.1866
(0.093) (0.0998) (0.0965) (0.1794) (0.2563) (0.311)

∆Pit (B2

λP
) 0.1194◦ 0.0505 0.0816 0.0881 -0.1401 -0.5808

(0.0526) (0.1272) (0.1257) (0.1289) (0.4041) (0.5525)
WP∆Pit (ΦPB

λP
) -0.0813† -0.0106 0.0138 -0.1305 0.0322 -0.1279

(0.0445) (0.0537) (0.0603) (0.0987) (0.1307) (0.2884)
BBit−1 (B3) -0.0164 0.0675 0.0962† -0.327• -0.0826 0.3434

(0.0307) (0.0572) (0.0527) (0.1049) (0.1737) (0.2446)
WBBBit−1 (ΦBB) 0.0742† 0.0671 0.0554 0.0961 -0.0515 -0.2546

(0.0435) (0.0839) (0.0817) (0.0849) (0.1819) (0.2607)
∆BBit (B3

λB
) -0.0073 0.0592 0.1145◦ 0.0133 0.2564† 0.6802•

(0.0123) (0.0433) (0.0459) (0.0534) (0.1344) (0.1831)
WB∆BBit (ΦBB

λB
) 0.0177 0.099 0.048 0.0663 0.0168 -0.2485

(0.0198) (0.1292) (0.1286) (0.0601) (0.2818) (0.3727)
Et−1 (−λE) -0.7234• -0.7383• -0.7418• 0.246 0.0823 -0.288

(0.2575) (0.1228) (0.1347) (0.7627) (0.4179) (0.4781)

Moran’s I statistic 0.2062 0.021 0.001 0.2118 0.0034 -0.0502
P-Value 0 0.0454 0.9029 0 0.7294 0

Robust standard errors in parenthesis. Significance at the 1%, 5%, and 10% levels indicated
by •, ◦, and †, respectively. Moran’s I test is on the residuals with a spatial weight matrix
based on contiguity of counties. Controls include: percentage of highways in county, share
of population with at least a bachelor’s degree, average weekly wage, share of taxable wages,
unemployment rate, median household income, share of population above 65, and a dummy
for rural counties.

claim (previous coefficient estimate of 0.3939 and significant at the 5% level; comparable

estimates for the extended model are 0.9416 and significant at the 1% level). Whereas the

earlier model implied effects of a county having one more broadband service provider in

2008 is approximately 200 more migrants for a county between 2008 and 2010, the extended

model indicates an additional broadband service provider would lead to approximately 470

more migrants. In addition, the coefficient associated with lagged broadband and number

49



Table 10: Extended Model: Reduced Form Broadband Equation (∆BB)

Emp. Variable: Total Employment No. of Establishments

Covariates OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

Pit−1 (Γ2) 0.1055 -0.2142 -0.0005 0.2092 -0.1397 0.1931
(0.1197) (0.3024) (0.4239) (0.2028) (0.426) (0.6503)

WPPit−1 (ΦPΓ) -0.0486 -0.0825 0.2891 0.1807 0.1159 0.2192
(0.2401) (0.6379) (1.0615) (0.2077) (0.5564) (0.9566)

∆Pit ( Γ2

λP
) 0.0776† -0.4616◦ -0.4579 0.0579 -0.4191◦ 0.1537

(0.0418) (0.2099) (0.3192) (0.0518) (0.2096) (0.3308)
WP∆Pit (ΦPΓ

λP
) -0.0729 -0.0687 0.0238 -0.0691 -0.3026 -0.1402

(0.0602) (0.1172) (0.1484) (0.0619) (0.2027) (0.3313)
Eit−1 (Γ3) 0.2391◦ 0.4979 1.0899• 0.0954 -0.167 0.0148

(0.1139) (0.34) (0.4116) (0.2896) (0.3088) (0.5163)
WEEit−1 (ΦEΓ) 0.2221 -0.5498 -0.7449 -0.0424 0.0399 -0.1886

(0.2715) (0.6511) (1.1901) (0.224) (0.6) (0.9971)
∆Eit ( Γ3

λE
) -0.034 0.6406 1.5219◦ 0.0244 0.3146 0.913•

(0.1096) (0.5831) (0.7447) (0.0646) (0.2803) (0.27)
WE∆Eit (ΦEΓ

λE
) -0.0018 -0.9888 -0.9148 -0.0204 -0.6155• -0.5171

(0.1714) (0.6663) (0.6348) (0.0542) (0.2211) (0.3352)
BBt−1 (−λB) -0.5926• -0.5989• -0.675• -0.5758• -0.5209• -0.5086•

(0.0341) (0.0525) (0.0732) (0.0429) (0.0749) (0.1119)

Moran’s I statistic 0.1921 -0.0045 -0.0484 0.1937 0.0021 -0.1564
P-Value 0 0.6927 0 0 0.8179 0

Robust standard errors in parenthesis. Significance at the 1%, 5%, and 10% levels indicated
by •, ◦, and †, respectively. Moran’s I test is on the residuals with a spatial weight matrix
based on contiguity of counties. Controls include: TPI, median household income, share
of vacation homes, percentage of highways in county, average weekly wage, housing permit
start-ups, and a dummy for rural counties.

of establishments as the employment variable indicates evidence in favor of “people follow

broadband,” although the magnitude is smaller. The analysis can be further examined from

a non-structural context through the change in broadband providers, ∆BBit, which is not

present in the simpler model. For the Population equation, I find evidence in favor of the

hypothesis that “people follow broadband” due to significant estimates on the change in

broadband providers from 2008 to 2010. This is found whether the employment variable

is total employed or number of establishments. The coefficients are normalized, as in the
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simpler model, and thus table 3 needs to be used to convert coefficients to more interpretable

effects. Doing so indicates that an increase of 1 broadband service provider from 2008 to 2010

would approximately result in 1,525 to 1,900 more migrants over this period, depending on

if employment is measured in total employment or number of establishments, respectively.

The simpler model does not provide evidence in favor of the “jobs follow broadband”

hypothesis; however, in the Employment equation for the Extended Model (table 9) there

appears to be some evidence for this claim. The lagged broadband variable is a significant

predictor of employment change from 2008 to 2010 when measured as total employment,

but not if employment is measured in number of establishments. In practical terms, a one-

provider increase in 2008 leads to a change in approximately 135 more employees (jobs)

for a county over 2008 to 2010. There is stronger evidence present for the “jobs follow

broadband” hypothesis when inspecting the change in broadband providers from 2008 to

2010, which indicates a positive and significant relationship regardless of the variable used

for employment. The coefficient estimates would imply that a one-provider increase over the

period of 2008 to 2010 leads to approximately 560 more employees or 97 more establishments

from 2008 to 2010.

An advantage to estimating the Extended Model for Broadband is that broadband is

treated as endogenous and so the claims of whether or not “broadband follows people” or

“broadband follows jobs” can be addressed if causality is of concern. In the broadband

equation (table 10), none of the coefficients associated with the population variables are

significant with the exception of the GS2SLS estimates for change in population. In other

words, there is no evidence in favor of the hypothesis that “broadband follows people.”

Combined with the findings that “people follow broadband” in the Population equation, this

result is highly suggestive that broadband growth over 2008 to 2010 (and broadband level

in 2008) causes/attracts migrants over the same time period.

When evaluating the effects of employment on the change in broadband providers, lagged

employment is significant when the employment variable is total employees but not when
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the variable is number of establishments, and change in employment is significant for both

definitions of employment. This result suggest that “broadband follows jobs” while “jobs

follow broadband” also has evidence in favor of it. Combining these results suggests that the

relationship between job growth and broadband growth is symbiotic as they both depend

upon each other.

Of secondary concern is the relationship between population and employment. For the

Employment equation in table 9, the lack of a significant relationship with the population

variables does not give any support to the hypothesis that “jobs follow people” as is the case

in the simpler model. The Population equation results in table 8 are likewise comparable to

what was found using the simpler model; i.e., that “people follow jobs” when the employment

variable is total employment but that “jobs repel people” if the employment variable is

number of establishments. As with the simpler model, data limitations do not allow further

inspection of this perplexing relationship.

6.2.2 Structural Parameters

As noted earlier in discussing the simpler Population-Employment Model, the reduced form

estimates do not convey a complete picture of the relationship between population, employ-

ment, and broadband because of the equilibrium adjustment parameters. So long as frictions

exist in the economy that result in counties converging toward equilibrium but not necessar-

ily being in an equilibrium, the structural parameters need to be recovered for evaluation of

the relationship among the three variables of interest.

Table 11 presents ten Wald tests to give a complete picture of the dynamics among

the three processes. The first nine tests directly result from the necessary conditions for

causality in table 2. Within the context of whether or not any of the three endogenous

processes “follow” the other, the results do not indicate evidence for a causal relationship as

the null hypothesis of no relationship cannot be rejected for the structural parameters. Not

finding evidence for a causal relationship is at odds for some of the reduced form results. This
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Table 11: Extended Model: Wald Tests for Structural Parameters

Emp. Variable: Total Employment No. of Establishments
OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

Null Hypothesis

α2 = 0 0.065 0.0276 0 0.0358 0.0542 0.0689
(0.5514) (0.6367) (0.9418) (0.6125) (0.5709) (0.545)

α3 = 0 0.4633 0.549 0 0.0294 0.0612 0.0856
(0.2901) (0.2643) (0.9418) (0.6311) (0.558) (0.5202)

α2 = α3 = 0 0.5362 0.5606 0 0.0569 0.0642 0.0857
(0.7648) (0.7556) (1) (0.9719) (0.9684) (0.9581)

β2 = 0 0.1907 0.0974 0.135 0.002 0.0399 0.0184
(0.4189) (0.505) (0.4645) (0.8101) (0.602) (0.6714)

β3 = 0 0.0979 0.076 0.0777 0.0862 0.0158 0.0265
(0.5044) (0.5339) (0.5315) (0.5195) (0.6836) (0.6404)

β2 = β3 = 0 0.2016 0.0975 0.1369 0.2322 0.0427 0.0275
(0.9041) (0.9524) (0.9338) (0.8904) (0.9789) (0.9863)

γ2 = 0 0.0398 0.0138 0 0.4503 0.0301 0.0248
(0.6023) (0.6943) (0.9706) (0.2944) (0.629) (0.6464)

γ3 = 0 0.3949 0.096 0.1248 0.0239 0.0048 0.001
(0.3143) (0.5067) (0.4745) (0.6494) (0.765) (0.8424)

γ2 = γ3 = 0 0.4333 0.1152 0.13 0.4631 0.0575 0.0489
(0.8052) (0.944) (0.9371) (0.7933) (0.9717) (0.9758)

BB Equation 49 19.0937• 28.6462• 22.2227• 21.5648• 12.6845† 3.0665
(0.0079) (2e-04) (0.0023) (0.003) (0.0802) (0.8788)

P-Values in parenthesis. Significance at the 1%, 5%, and 10% levels indicated by •, ◦, and
†, respectively.

in turn calls into question how one might interpret a reduced form regression in determining

a causal relationship for broadband. If a spatial economy has regions that converge towards

an equilibrium at some adjustment rate, then this necessitates a structural model to recover

the true parameters of interest. The results presented here indicate that, after accounting

for the adjustment parameters, no significant relationship of true structural parameters can

be found between population, employment, and broadband across 2008 to 2010. This is

a key insight as spurious results can be drawn from reduced form estimates if equilibrium

adjustments are unaccounted for.

The last Wald test investigates whether the parameters associated with the broadband
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equation 16c are jointly different from zero. Failure to reject the null hypothesis is evidence

that the broadband process may not be endogenous and would reduce the Extended model

to the Population-Employment Model. All of the estimators reject the null hypothesis of

no relationship except for the FGS3SLS estimator with number of establishments as the

employment variable. This gives evidence that broadband is an endogenous variable within

the context of migration and employment. Even with broadband as an endogenous process,

the structural results between the Extended and Population-Employment models remain the

same.

Table 12: Extended Model: Wald Tests for Spatial Parameters

Emp. Variable: Total Employment No. of Establishments
OLS GS2SLS FGS3SLS OLS GS2SLS FGS3SLS

Null Hypothesis

φea = 0 0.0756 0.1747 0.1781 1.2054 3.6506◦ 0.3207
(0.5345) (0.4308) (0.4282) (0.1469) (0.0284) (0.3451)

φba = 0 13.5082• 26.8932• 20.611• 19.2463• 12.1945• 1.6094
(1e-04) (0) (0) (0) (2e-04) (0.1081)

φpb = 0 0.3335 0.4942 0.5539 0.0068 0.1234 0.1195
(0.3394) (0.2803) (0.2629) (0.7433) (0.4759) (0.48)

φbb = 0 0.3531 0.1025 0.084 1.7722† 0.016 0.7257
(0.331) (0.4988) (0.5224) (0.0962) (0.6828) (0.2217)

φpΓ = 0 0.0359 0.0191 0 0.4216 0.024 0.0347
(0.6123) (0.6685) (0.9706) (0.3044) (0.649) (0.6155)

φeΓ = 0 0.2849 0.5923 0.3869 0.03 0.0037 0.0007
(0.3624) (0.2527) (0.3173) (0.6291) (0.7791) (0.8555)

φpb = φpΓ = 0 0.3694 0.5133 0.5821 0.4285 0.1475 0.1417
(0.8313) (0.7736) (0.7475) (0.8072) (0.9289) (0.9316)

φea = φeΓ = 0 0.3606 0.767 0.5643 1.2354 3.6543 0.321
(0.835) (0.6815) (0.7542) (0.5392) (0.1609) (0.8517)

φba = φbb = 0 20.2262• 27.3737• 20.8108• 19.2594• 12.22• 1.6099
(0) (0) (0) (1e-04) (0.0022) (0.4471)

P-Values in parenthesis. Significance at the 1%, 5%, and 10% levels indicated by •, ◦, and
†, respectively.

Finally, table 12 presents Wald tests for the spatial parameters corresponding to hous-

ing, labor, and broadband markets. The estimated structural relationships fails to indicate a
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significant relationship for any of these markets with the exception of the broadband market

for population, φba.
23 The algebra behind this structural parameter would indicate roughly

a coefficient between -0.886 to -1.195 on the spatially lagged broadband variables for the

population equation. Since the regression coefficients are in terms of z-scores, the inter-

pretation would be that an increase of one standard deviation in the average of broadband

providers for neighbors of a county (5.1 in 2008 or 1.1 from 2008 to 2010) would lead to a

decrease in approximately 0.886 standard deviations of migration from 2008 to 2010 (3,494).

Succinctly, if the neighbors of a county, on average, had one more broadband provider each

in 2008 then a county can expect a decrease of approximately 607 migrants. This effect can

be interpreted as an indication of counties competing against each other within a region for

migrants. This is a strong effect, economically, although it is important to emphasize that

the effect is if all neighbors for a county had one more broadband provider in 2008. Given

that the average number of neighbors for a county is 6, the spatial effects would necessitate

that the neighbors collectively had 6 more providers on average.

6.3 Robustness Checks

An argument in the evaluation of broadband as a driver for economic growth is that only

certain sectors of the economy are impacted by the use of broadband (Kolko, 2012). Because

aggregate employment is used in the previous section, it is possible that the effects of broad-

band may be masked for particular industries. In order to evaluate this claim, employment is

broken down by NAICS classification and the Population-Employment Model re-estimated.

Table 13 displays the structural parameter α1,BB and its corresponding standard error via

the Delta Method (as described in section 4.3.1). Table 14 does the same for β1,BB. The

corresponding p-values for each table are from Wald tests for the structural parameters as

in section 6.1.2. As can be seen in the tables, the conclusions drawn from the two equation

model do not change as none of the NAICS classifications indicate that broadband causes

23 This is for all estimators except for the FGS3SLS with number of establishments as the employment
variable.
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employment or population growth for a county.
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Table 13: NAICS Classifications: α1,BB

Emp. Variable: Total Employment No. of Establishments
Industry (NAICS Classification) Delta S.E. P-Val Delta S.E. P-Val
All Firms 3.19 (16.439) 0.846 0.649 (1.666) 0.697
Only Private Firms 0.855 (1.346) 0.525 1.42 (4.061) 0.727
Agriculture, Forestry, Fishing and Hunting (11) 0.608 (0.946) 0.52 0.791 (1.864) 0.672
Mining (21) 0.661 (0.734) 0.368 0.472 (1.276) 0.711
Utilities (22) 0.162 (0.684) 0.813 0.0663 (0.209) 0.751
Construction (23) 0.438 (0.914) 0.632 -2.19 (7.208) 0.761
Manufacturing (31-33) 6.48 (31.140) 0.835 -0.0357 (1.699) 0.983
Wholesale Trade (42) 0.22 (2.225) 0.921 0.755 (1.041) 0.468
Retail Trade (44-45) -0.0979 (0.246) 0.691 -0.671 (6.381) 0.916
Transportation and Warehousing (48-49) 0.689 (2.322) 0.767 0.142 (0.432) 0.742
Information (51) -0.62 (1.278) 0.627 2 (3.951) 0.613
Finance and Insurance (52) -0.051 (1.014) 0.96 2.16 (52.263) 0.967
Real Estate and Rental and Leasing (53) 0.285 (1.110) 0.797 0.591 (2.609) 0.821
Professional, Scientific, and Technical Services (54) 0.497 (0.967) 0.607 -0.00825 (1.576) 0.996
Management of Companies and Enterprises (55) 0.47 (0.641) 0.464 0.0199 (0.156) 0.899
Administrative and Business Support Services (56) 0.0317 (0.161) 0.844 0.462 (2.065) 0.823
Educational Services (61) 0.362 (1.899) 0.849 -0.832 (4.141) 0.841
Health Care and Social Assistance (62) 0.29 (0.566) 0.608 -0.218 (5.704) 0.97
Arts, Entertainment, and Recreation (71) 0.147 (1.784) 0.934 -101 (31,270.207) 0.997
Accommodation and Food Services (72) 0.415 (0.445) 0.35 -2.15 (12.730) 0.866
Other Services (except Public Administration) (81) -0.474 (7.066) 0.946 0.367 (0.666) 0.582
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Table 14: NAICS Classifications: β1,BB

Emp. Variable: Total Employment No. of Establishments
Industry (NAICS Classification) Delta S.E. P-Val Delta S.E. P-Val
All Firms 0.0868 (0.133) 0.515 0.459 (1.266) 0.717
Only Private Firms 0.179 (1.177) 0.879 0.292 (0.842) 0.729
Agriculture, Forestry, Fishing and Hunting (11) 1.49 (2.828) 0.6 0.63 (18.703) 0.973
Mining (21) 0.29 (1.673) 0.862 -0.435 (2.093) 0.835
Utilities (22) -0.189 (0.880) 0.83 -0.0716 (0.420) 0.865
Construction (23) 0.272 (0.655) 0.678 0.149 (0.263) 0.572
Manufacturing (31-33) -0.113 (0.313) 0.718 0.0116 (0.120) 0.924
Wholesale Trade (42) -0.0667 (0.245) 0.785 -0.683 (0.852) 0.423
Retail Trade (44-45) 0.0296 (0.126) 0.814 0.505 (0.769) 0.511
Transportation and Warehousing (48-49) -0.28 (7.322) 0.97 -0.984 (5.629) 0.861
Information (51) -0.309 (1.579) 0.845 -0.0945 (0.490) 0.847
Finance and Insurance (52) 0.0219 (0.148) 0.882 -0.0351 (0.276) 0.899
Real Estate and Rental and Leasing (53) 0.402 (0.590) 0.496 0.494 (0.911) 0.587
Professional, Scientific, and Technical Services (54) 0.12 (0.257) 0.64 0.0237 (0.620) 0.969
Management of Companies and Enterprises (55) -0.582 (1.179) 0.622 -0.00618 (0.083) 0.941
Administrative and Business Support Services (56) 0.0167 (0.068) 0.806 -4.48 (48.148) 0.926
Educational Services (61) 0.492 (6.674) 0.941 0.0989 (0.141) 0.482
Health Care and Social Assistance (62) 0.281 (0.632) 0.657 0.0454 (2.865) 0.987
Arts, Entertainment, and Recreation (71) 0.195 (4.297) 0.964 0.408 (1.131) 0.718
Accommodation and Food Services (72) -0.154 (0.908) 0.865 0.3 (0.708) 0.672
Other Services (except Public Administration) (81) -12.2 (450.580) 0.978 0.227 (0.171) 0.184
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7 Concluding Remarks

In this paper, I have developed a framework for evaluating three inter-related processes:

population growth, employment growth, and broadband diffusion. Employing a structural

approach such as has been used here is necessary because a reduced form framework may

obscure how each of these processes influences the others. Indeed, with a structural model

involving population, employment, and broadband I demonstrate that while the reduced

form estimates indicate significant relationships among the three processes, the structural

parameters do not find any significant relationships. The adjustment parameter of a model

involving dynamic variables that, on their own, converge towards levels independent of other

factors is the key element in a structural relationship between population, employment, and

broadband that temper the reduced form findings.

For broadband, this paper casts doubt on claims that broadband can be a driver of eco-

nomic growth in the United States. The structural relationship does not appear to indicate

that “jobs follow broadband” or that “people follow broadband” in order to justify claims

that infrastructure development in broadband for a county or municipality will be a driver in

growth. This paper does indicate how one might be persuaded to think that broadband can

drive economic growth as the reduced form estimates in the Extended Model for Broadband

would indicate that “jobs follow broadband” when the endogeneity of the broadband process

is accounted for.

There is cause for concern as to how flexible the structural model is. If the structural

model is not a true reflection of how the three processes develop, then the estimated structural

parameters may not be informative. Determining the flexibility of the model to different

functional forms for each of the processes is left for future research to consider other counter-

factual models in assessing how broadband can impact an economy.
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A Appendix

A.1 Dynamic System

In order to have a stable equilibrium for the system, the constraints λP , λE ∈ (0, 1) need to

be imposed. This can be seen by rearranging equation 7 in terms of a linear partial difference

equation in Pi,t, Pi,t−1, Ei,t and Ei,t−1:

 Pi,t

Ei,t

 =

 A11 A12

A21 A22


 Pi,t−1

Ei,t−1

+

 BP,0

BE,0

 (41)

Where BP,0 and BE,0 are vectors of initial conditions of the exogenous variables. The coeffi-

cients for A11, A12, A21 and A22 are functions of λP and λE. For the system to be stable, the

eigenvalues of the coefficient matrix needs to be strictly less than 1 in absolute value. The

implication here is that λP and λE can be estimated in an unrestricted regression, and then

tested to see if their estimates imply a stable equilibrium. If they do not, I can re-estimate

the equation with a restriction on the equilibrium adjustment parameters to force a stable

system. This becomes an empirical question of the validity of the model.

A.1.1 Reduced Form: Population-Employment Model

The reduced form models of 8 can be expressed by rearranging and grouping terms as:

Pi,t = A1Z + Ξ2Ei,t + Ξ3Ei,t−1 + (1− λP )Pi,t−1 (42a)

Ei,t = B1Z + Ψ2Pi,t + Ψ3Pi,t−1 + (1− λE)Ei,t−1 (42b)

where Ξ2 = (I + φEWE) α2λP
λE

, Ξ3 = (I + φEWE) α2λP (λE−1)
λE

, Ψ2 = (I + φPWP ) β2λE
λP

, and

Ψ3 = (I + φPWP ) β2λE(λP−1)
λP

. In order to evaluate the stability of the system, both Pi,t and

Ei,t need to be expressed as a function of exogenous variables.

Substituting Ei,t from 42b into equation 42a gives us:
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Pi,t = A1Z + Ξ2

[
B1Z + Ψ2Pi,t + Ψ3Pi,t−1+(1− λE) Ei,t−1

]
+ Ξ3Ei,t−1 + (1− λP )Pi,t−1 (43a)

(I − Ξ2Ψ2)Pi,t = (A1Ξ2B1)Z + (1− λP + Ξ2Ψ3)Pi,t−1 +
(
Ξ2 (1− λE) + Ξ3

)
Ei,t−1 (43b)

Pi,t = G−1 (A1Ξ2B1)Z+G−1 (1− λP + Ξ2Ψ3)Pi,t−1 +G−1 (Ξ2 (1− λE) + Ξ3)Ei,t−1 (43c)

where G = (I − Ξ2Ψ2). With Pi,t solved in terms of exogenous variables, equation 43c can

be substituted into equation 42b:

Ei,t = B1Z + Ψ2

[
G−1 (A1Ξ2B1) Z + G−1 (1− λP + Ξ2Ψ3) Pi,t−1+

G−1 (Ξ2 (1− λE) + Ξ3) Ei,t−1
]

+ Ψ3Pi,t−1 + (1− λE)Ei,t−1 (44a)

Ei,t =
(
B1 + Ψ2G

−1 (A1Ξ2B1)
)
Z +

(
Ψ3 + Ψ2G

−1 (1− λP + Ξ2Ψ3)
)
Pi,t−1+(

1− λE + Ψ2G
−1 (Ξ2 (1− λE) + Ξ3)

)
Ei,t−1 (44b)

With equations 43c and 44b as the simplified versions of the model, the system can be

put into the form of equation 41. In order to do this, the terms involving a spatial weight

matrix (WE and WP ) need to be evaluated as an average spatial effect. The system would

be highly non-linear due to the non-zero values of a spatial weight matrix which would be

computationally infeasible. The above equations can be rearranged in terms of exogenous

variables as follows:
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 Pi,t

Ei,t

 =

 1− λP 0

0 1− λE


 Pi,t−1

Ei,t−1

+

 BP,0

BE,0

 (45)

where BP,0 and BE,0 are functions of exogenous variables. The condition for a stable equi-

librium is that the largest eigenvalues of the matrix above must be less than 1 in absolute

value. This is why the constraints λP , λE ∈ (0, 1) need to be imposed.

A.2 Three Equation

For the Extended Model for Broadband, there are six parameters of interest: α1, α2, β1, β2,

γ1, and γ2. Similar to the process of evaluating these parameters using the Delta Method,

as in section 4.3.1, I can stack the parameters of interest into vector form as follows:

δ =



A1
A2

ΦE,A
A2
λE

ΦE,A
λE
A3

ΦB,A
A3
λB

ΦB,A
λB
−λP
B1
B2

ΦP,B
B2
λP

ΦP,B
λP
B3

ΦB,B
B3
λB

ΦB,B
λB
−λE
Γ1
Γ2

ΦP,Γ
Γ2
λP

ΦP,Γ
λP
Γ3

ΦE,Γ
Γ3
λE

ΦE,Γ
λE
−λB



=



α1λP
α2λP

α2λPφEA
α2λP
λE

α2λP φEA
λE
α3λP

α3λPφBA
α3λP
λB

α3λP φBA
λB
−λP
β1λE
β2λE

β2λEφPB
β2λE
λP

β3λEφBB
λP
β3λE

β3λEφBB
β3λE
λB

β3λEφBB
λB
−λE
γ1λB
γ2λB

γ2λBφPΓ
γ2λB
λP

γ2λBφPΓ
λP
γ3λB

γ3λBφE
γ3λB
λE

γ3λBφEΓ
λE
−λB



(46)

From the stacked vector of parameters, I can construct a function of the reduced form
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paramteres in order to recover the structural parameters of interest. As seen with 4.3.1, I

can let r(·) be a function of the parameters in the model:

r2 (δ) =



A2

λP

A3

λP

B2

λE

B3

λE

Γ2

λB

Γ3

λB


=



α2

α3

β2

β3

γ2

γ3


(47)

where I would like to evaluate each of these restrictions one at a time as well as across equa-

tions. This can be done by constructing a Wald test at which I assume the true parameter

δ and take a Taylor series expansion about this value. This allows for inference upon the

null hypothesis of H0 : r(δ) = 0 This involves taking the derivative of the restriction vector

in equation 36 with respect to the true parameters in δ:
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R2(δ) ≡ ∂r2 (δ)

∂δ′
=



0 0 0 0 0 0
1
λP

0 0 0 0 0

A2
λPΦE,A

0 0 0 0 0

λE
λP

0
B2
A2

B3
A2

0 0

A2λE
λPΦE,A

0
B2

ΦE,A

B3
ΦE,A

0 0

0 1
λP

0 0 0 0

0
A3

λPΦB,A
0 0 0 0

0
λB
λP

0 0
Γ2
A3

Γ3
A3

0
A3λB
λPΦB,A

0 0
Γ2

ΦB,A

Γ3
ΦB,A

A2
λ2
P

A3
λ2
P

0 0 0 0

0 0 0 0 0 0
0 0 1

λE
0 0 0

0 0
B2

λEΦP,B
0 0 0

A2
B2

A3
B2

λP
λE

0 0 0

A2
ΦP,B

A3
ΦP,B

B2λP
λEΦP,B

0 0 0

0 0 0 1
λE

0 0

0 0 0
B3

λEΦB,B
0 0

0 0 0
λB
λE

Γ2
B3

Γ3
B3

0 0 0
B3λB

λEΦB,B

Γ2
ΦB,B

Γ3
ΦB,B

0 0
B2
λ2
E

B3
λ2
E

0 0

0 0 0 0 0 0
0 0 0 0 1

λB
0

0 0 0 0
Γ2

λBΦP,Γ
0

A2
Γ2

A3
Γ2

0 0
λP
λB

0

A2
ΦP,Γ

A3
ΦP,Γ

0 0
Γ2λP
λBΦP,Γ

0

0 0 0 0 0 1
λB

0 0 0 0 0
Γ3

λBΦE,Γ

0 0
B2
Γ3

B3
Γ3

0
λE
λB

0 0
B2

ΦE,Γ

B3
ΦE,Γ

0
Γ3λE
λBΦE,Γ

0 0 0 0
Γ2
λ2
B

Γ3
λ2
B



′

(48)

The Wald Tests constructed from equation 48 allows for inference upon the relationship

between broadband and jobs/people.

One potential problem with the wald tests associated with equation 48 is that the struc-

tural three equation model implies that the broadband deployment process is endogenous.

The endogeneity of broadband can be formulated as an empirical question. If broadband

deployment is an exogenous process, then the causal inferences drawn from the above Wald

Tests are not valid. To determine the validity of a three equation model, the following
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restriction on structural paramters is tested:

γ1 = γ2 = γ3 = φBA = φBB = α3 = β3 = 0 (49)

Of note with the above restriction is that the equilibrium adjustment parameter, λB, is

not present. This is because the model becomes undefined if λB = 0 is imposed due to the

interaction with the equilibrium adjustment and all other parameters in the model. This

particular restriction is across multiple parameters and can be constructed via a restriction

vector of the following:

r3 (δ) =



Γ1

λB

Γ2

λB

Γ3

λB

ΦBA
A3

ΦBB
B3

A3

λP

B3

λE



=



γ1

γ2

γ3

φBA

φBB

α3

β3



(50)

This leads to a restriction matrix of the following form:
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R3(δ) ≡ ∂r3 (δ)

∂δ′
=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
B3
A2

0 0 0 0 0 0
B3

ΦEA

0 0 0 −ΦBA
A2

3
0 1

λP
0

0 0 0 1
A3

0
A3

λPΦBA
0

Γ1
A3

Γ2
A3

Γ3
A3

−ΦBAλB
A2

3
0

λB
λP

0

Γ1
ΦBA

Γ2
ΦBA

Γ3
ΦBA

λB
A3

0
A3λB
λPΦBA

0

0 0 0 0 0
A3
λ2
P

0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
A3
B2

0

0 0 0 0 0
A3

ΦEB
0

0 0 0 0 0 0 1
λE

0 0 0 0 −ΦBB
B2

3
0

B3
λEΦBB

Γ1
B3

Γ2
B3

Γ3
B3

0 1
B3

0
λB
λE

Γ1
ΦBB

Γ2
ΦBB

Γ3
ΦBB

0 −ΦBBλB
B2

3
0

B3λB
λEΦBB

0 0 0 0
λB
B3

0
B3
λ2
E

1
λB

0 0 0 0 0 0

0 1
λB

0 0 0 0 0

0
Γ2

λBΦPΓ
0 0 0 0 0

0
λP
λB

0 0 0
A3
Γ2

0

0
Γ2λP
λBΦPΓ

0 0 0
A3

ΦPΓ
0

0 0 1
λB

0 0 0 0

0 0
Γ3

λBΦEΓ
0 0 0 0

0 0
λE
λB

0 0 0
B3
Γ3

0 0
Γ3λE
λBΦEΓ

0 0 0
B3

ΦEΓ
Γ1
λ2
B

Γ2
λ2
B

Γ3
λ2
B

0 0 0 0



′

(51)

A.2.1 Spatial Parameters

Finally, the three equation model has spatial parameters of interest similar to the two equa-

tion model. The structural parameters φEA, φBA, φPB, φBB, φPΓ, and φEΓ determine the

spatial processes associated with the interrelationship of population, employment, and broad-

band.

69



r4 (δ) =



ΦEA
A2

ΦBA
A3

ΦPB
B2

ΦBB
B3

ΦPΓ

Γ2

ΦEΓ

Γ3


=



φEA

φBA

φPB

φBB

φPΓ

φEΓ


(52)

Taking the derivative of the restriction vector in equation 52 with respect to δ′ in equation 46:

R4(δ) ≡ ∂r4 (δ)

∂δ′
=



0 0 0 0 0 0

−ΦEA
A2

2
0 0 0 0 0

1
A2

0 0 0 0 0

−ΦEAλE
A2

2
0 0 0 0 0

λE
A2

0 0 0 0 0

0 −ΦBA
A2

3
0 0 0 0

0 1
A3

0 0 0 0

0 −ΦBAλB
A2

3
0 0 0 0

0
λB
A3

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 −ΦPB
B2

2
0 0 0

0 0 1
B2

0 0 0

0 0 −ΦPBλP
B2

2
0 0 0

0 0
λP
B2

0 0 0

0 0 0 −ΦBB
B2

3
0 0

0 0 0 1
B3

0 0

0 0 0 −ΦBBλB
B2

3
0 0

0 0 0
λB
B3

0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 −ΦPΓ
Γ2

2
0

0 0 0 0 1
Γ2

0

0 0 0 0 −ΦPΓλP
Γ2

2
0

0 0 0 0
λP
Γ2

0

0 0 0 0 0 −ΦEΓ
Γ2

3

0 0 0 0 0 1
Γ3

0 0 0 0 0 −ΦEΓλE
Γ2

3

0 0 0 0 0
λE
Γ3

0 0 0 0 0 0



′

(53)
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